Assessing Uncertainty in Regional Climate Experiments

Stephan R. Sain
Geophysical Statistics Project
Institute for Mathematics Applied to Geosciences
National Center for Atmospheric Research
Boulder, CO

Cari Kaufman, Doug Nychka, Linda Mearns (NCAR); Reinhard Furrer (CSM).

Supported by NSF ATM/DMS.
Goals

- Describe the distribution of model output.

- Understanding sources of variation.
 - GCM, RCM, GCM×RCM, Time Slice, etc.

- Combining model output – moving towards a scheme for weighting models.

- Recognizing that the climate model output represents spatial and/or spatial-temporal fields, we are developing methodology for a type of functional ANOVA.
 - Gaussian process ANOVA (Kaufman and Sain, 2007).
Functional ANOVA

- 2x2 “experiment”
 - 2 GCMs, 2 RCMs
 - PRUDENCE
- 1961-1990
- JJA average temp
Functional ANOVA

\[Z_{ijt}(s) = \mu_{ijt}(s) + \epsilon_{ijt}(s) \]

Output of RCM i, GCM j, at time t and location s = “Climate” + Spatially correlated residual/“internal response model variability”

\[\mu_{ijt}(s) = \mu(s) + i\alpha(s) + j\beta(s) + ij(\alpha\beta)(s) + \gamma t, \]

= Common + RCM + GCM + Interaction + Time

- \(i, j = -1, 1 \) (contrast coding)

- Hierarchical model with Gaussian process priors used for each effect.

- MCMC used to estimate parameters, posterior inference, etc.
Functional ANOVA

- Estimates of spatial effects.
Functional ANOVA

- Posterior mean of variance components.
Functional ANOVA

- Ratios of variances.
A Work in Progress

• 4 regional models.

• Total JJA precipitation, 1996-2000.
Model Output

Model Year
A Functional ANOVA Model

- A single-factor ANOVA model:

\[Z_{it}(s) = \mu(s) + h_i(s) + \epsilon_{it}(s) \]

\[= \text{Common} + \text{RCM} + \text{Error} \]

- Hierarchical model with Gaussian prior (with spatial covariance) on \(h_i(s) \).

- \(\mu(s) = x(s)'\beta \) (based on NCEP).

- Errors \(\epsilon_{it}(s) \) are also spatially correlated Gaussian.

- MCMC to estimate parameters, posterior inference, etc.
Results \(h_i(s), \text{ Posterior Means} \)
Results (A Posterior Draw)

$h_i(s)$

Residuals

Model
Results (A Posterior Draw)

- Compare s_h^2 to s^2; highlight where $s_h^2 > s^2$.
Results \((P[s_h^2 > s^2]) \)
A Proposal for Combining Model Output

- Assumption of model output representing iid random draws may not be reasonable.

- A modified model:

\[Z_{it}(s) = \mu(s) + h_i(s) + \epsilon_{it}(s) \]

\[= \text{Common} + \text{RCM} + \text{Error} \]

- The key difference is the prior on \(h_1(s), h_2(s), h_3(s) \) is Gaussian with mean 0 and

\[
\text{Var} \begin{pmatrix}
 h_1(s) \\
 h_2(s) \\
 h_3(s)
\end{pmatrix} = \Sigma_h
\]
A Proposal for Combining Model Output
A Proposal for Combining Model Output

- The model-to-model covariance, Σ_h, can be used to create a linear combination of the $h_i(s)$.

- Assuming $E[h_i(s)] = \mu(s)$, it is easy to show that the w that minimizes the variance of $\sum_i w_i h_i(s)$ is the solution to

$$
\begin{pmatrix}
\Sigma_h & -1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
w \\
\lambda
\end{pmatrix} =
\begin{pmatrix}
0 \\
1
\end{pmatrix}.
$$

- Other ideas: maximize variance (principal components), etc.
A Proposal for Combining Model Output

\[\hat{\Sigma}_h = \begin{pmatrix} 2.05 & 0.66 & 0.37 \\ 0.94 & 0.50 & \end{pmatrix} \]

\[\hat{w} = \begin{pmatrix} 0.14 \\ 0.54 \\ 0.32 \end{pmatrix} \]
Extremes

- Spatial scaling of return levels.
- Comparing spatial distributions of extremes.
Questions?

ssain@ucar.edu