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Goals
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• Describe the distribution of model output.

• Understanding sources of variation.

– GCM, RCM, GCM×RCM, Time Slice, etc.

• Combining model output – moving towards a scheme for

weighting models.

• Recognizing that the climate model output represents spatial

and/or spatial-temporal fields, we are developing methodology

for a type of functional ANOVA.

– Gaussian process ANOVA (Kaufman and Sain, 2007).



Functional ANOVA
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• 2x2 “experiment”

– 2 GCMs, 2 RCMs

– PRUDENCE

• 1961-1990

• JJA average temp



Functional ANOVA
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Zijt(s) = µijt(s) + εijt(s)

Output of RCM i, Expected/ Spatially correlated

GCM j, at time t = “Climate” + residual/“internal

and location s response model variability”

µijt(s) = µ(s) + iα(s) + jβ(s) + ij(αβ)(s) + γt,

= Common + RCM + GCM + Interaction + Time

• i, j = −1,1 (contrast coding)

• Hierarchical model with Gaussian process priors used for each effect.

• MCMC used to estimate parameters, posterior inference, etc.



Functional ANOVA
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12 13 14 15 16

Grand Mean

−1.0 −0.5 0.0 0.5 1.0

Regional Model

−1.0 −0.5 0.0 0.5 1.0

Global Model

−1.0 −0.5 0.0 0.5 1.0

Interaction

• Estimates of spatial effects.



Functional ANOVA
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Regional model Global model Interaction Internal variability

0.2 0.4 0.6 0.8 1.0 1.2 1.4

• Posterior mean of variance components.



Functional ANOVA
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2)

0.5 0.6 0.7 0.8 0.9 1.0

• Ratios of variances.



A Work in Progress
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• 4 regional models.

• Total JJA precipitation, 1996-2000.



Model Output
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Model

Year



A Functional ANOVA Model
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• A single-factor ANOVA model:

Zit(s) = µ(s) + hi(s) + εit(s)

= Common + RCM + Error

• Hierarchical model with Gaussian prior (with spatial covari-

ance) on hi(s).

• µ(s) = x(s)′β (based on NCEP).

• Errors εit(s) are also spatially correlated Gaussian.

• MCMC to estimate parameters, posterior inference, etc.



Results (hi(s), Posterior Means)
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Results (A Posterior Draw)
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Model

hi(s) Residuals



Results (A Posterior Draw)
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• Compare s2h to s2; highlight where s2h > s2.



Results (P [s2h > s2])
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A Proposal for Combining Model Output
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• Assumption of model output representing iid random draws

may not be reasonable.

• A modified model:

Zit(s) = µ(s) + hi(s) + εit(s)

= Common + RCM + Error

• The key difference is the prior on h1(s), h2(s), h3(s) is Gaussian

with mean 0 and

Var

 h1(s)
h2(s)
h3(s)

 = Σh



A Proposal for Combining Model Output
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A Proposal for Combining Model Output
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• The model-to-model covariance, Σh, can be used to create a

linear combination of the hi(s).

• Assuming E[hi(s)] = µ(s), it is easy to show that the w that

minimizes the variance of
∑

i wihi(s) is the solution to(
Σh −1
1 0

)(
w
λ

)
=

(
0
1

)
.

• Other ideas: maximize variance (principal components), etc.



A Proposal for Combining Model Output
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Σ̂h =

 2.05 0.66 0.37
0.94 0.50

1.37


ŵ =

 0.14
0.54
0.32





Extremes
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• Spatial scaling of

return levels.

• Comparing spatial distribu-

tions of extremes.



Questions?
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ssain@ucar.edu


