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Abstract

Methodology and Approach

References

We consider the challenge of forecasting future regional climate by blending 
di�erent members of an ensemble of regional climate model (RCM) simula-
tions while accounting for the discrepancies these simulations have shown 
with observational records for the recent past.  To this end, we develop Bayes-
ian space-time models that assess the discrepancies between di�erent cli-
mate model simulations and observational records. Those discrepancies are 
then propagated into the future to obtain blended forecasts of 21st century 
climate. The model allows for location-dependent spatial heterogeneities, 
providing local comparisons between the di�erent simulations.  Additionally, 
we estimate the di�erent modes of spatial variability, and use the climate 
model-speci�c coe�cients of the spatial factors for comparisons. We focus on 
regional climate model simulations performed in the context of the North 
American Regional Climate Change Assessment Program (NARCCAP). We con-
sider, in particular, simulations from RegCM3 using three di�erent forcings:  
NCEP, GFDL and CGCM3. We use simulations for two time periods: current cli-
mate conditions, covering 1971 to 2000, and future climate conditions under 
the SRES A2 emissions scenario, covering 2041 to 2070. We investigate yearly 
mean summer temperature for a domain in the South West of the United 
States. The results indicated the RCM simulations underestimate the mean 
summer temperature increase for most of the domain.
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Predictions across time
A detailed analysis of the resulting predictions across time can be obtained by focusing on 
speci�c locations. The chosen locations are indicated by circles in Figure 1. Figure 3 presents 
the predictions from our model along with all sources of information used in the model. The 
shadowed areas correspond to 95% probability intervals. The uncertainty around the predic-
tions is rather large spanning about 7°C. It can be noted that the di�erences between the RCM 
predictions driven by the GFDL and CGCM3 models and the predictions of our model are 
strongly dependent on location.  For the locations in Idaho and Utah, the RCM predictions 
driven by the GFDL and CGCM3 models fall outside the 95% probability intervals of our model 
predictions for both the current and future time periods. This is due to the large discrepancies 
between the RCM predictions and the observed values at these locations. Our model propa-
gates these discrepancies into the future, so they are also accounted for in the future predic-
tions. The location-dependency of the discrepancies visible in Figure 3 indicates the necessity 
to allow for spatially varying discrepancy terms in the model formulation.

Figure 3:  Predictive values across time at four selected locations.  The gray 
shadows correspond to 95% probability intervals.
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Table 1: Available data

Current scenario Future scenario
Source Period Years Period Years

Observations 1971–2010 40 – –
GFDL 1971–2000 30 2041–2070 30
CGCM3 1971–2000 30 2041–2070 30
NCEP 1979–2003 25 – –

The application presented in this poster focuses on mean summer tem-
perature for an area in the Southwest of the United States. The domain is 
shown in Figure 1(a).  We consider regional climate model output simu-
lated using RegCM3 (Pal et al., 2007) under NCEP, GFDL and CGCM3 forc-
ings.  In addition, we use observational data derived from weather station 
data.  The hourly weather station data from 1971-2010 was drawn from 
the National Climatic Data Center database and used to predict mean 
daily temperature at the RCM pixel centroids.  These predictions were gen-
erated using a spatial regression model that included elevation as a covari-
ate, spatial random e�ects, and a nugget.  Model parameters were esti-
mated simultaneously using maximum likelihood.  As a result, our analysis 
uses four sources of information.  These are summarized in Table 1.
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Figure 1:  (a) The �ne grid corresponds to the resolution of the RCM output.  
The coarse grid is used to build the predictive process.  The circles correspond 
to the locations used as examples in the results.  (b) Time series of spatially 
averaged data.

Figure 2:  (a) Temporal average of 
the observations; (b) Temporal av-
erage of the RCM simulations 
under NCEP forcings; (c) Temporal 
average of the RCM simulations 
under GFDL forcings; (d) Temporal 
average of the RCM simulations 
under CGM3 forcings.  Period con-
sidered: 1979-2000.

Figure 4:  (a) Temporal average of the model predictions; (b) Temporal average of the 
RCM simulations under GFDL forcings; (c) Temporal average of the RCM simulations 
under CGM3 forcings.  Period considered: 2041-2070.

The summer mean temperatures averaged over 2041 to 2070 are 
similar between the RCM simulations under GFDL and CGM3 
forcings, but show marked di�erence between the RCM simula-
tions and the model predictions.  The model predictions are 
higher in most areas with the exception of the California coast-
line.  The di�erences between the RCM simulations and the 
model predictions stem from the discrepancies between the 
RCM simulations and the observations.  These discrepancies are 
location-dependent and are propagated into the future. 

Figure 5: (a) Predictions for 2010 (b) Predictions for 2070 (c) Di�erence of predictions between 2010 and 2070. (d) Probability 
of exceeding a 3°C increase more than 85%.  (e) Probability of exceeding 3°C increase more than 90%.
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Figure 5 indicates loca-
tions where large tem-
perature increases are 
highly probable, namely 
the California coast line 
and a region covering 
eastern Idaho into Wyo-
ming. These are areas 
where the RCMs have 
comparatively similar or 
even higher temperatures 
than observations for past 
conditions. 
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The developed model is a Bayesian space-time model using prredictive 
Gaussian processes to model spatial non-stationaarity and to make computation 
feasible.  Let  be they st ( )   observed temperatures at time  and site  and  t s y stj

CM ( )
bbe the RegCM3 output using GFDL ( ), CGCM3 ( ) and NCj j= =1 2 EEP ( ) 
forcings.  We propose a space-time model that as

j =3
ssumes that temperature 

can be expressed as the sum of a baaseline, a constant trend, a process 
explaining small scalle spatial variability, and an observational error.  The 
bbaseline is, possibly, a function of time and location deppendent covariates. 
Climate model output follows a similarr model, with the addition of a model 
and time dependent ddiscrepancy term.  The full speci�cation of the model is  
given by the equations:
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=
t s s t t
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wheree N(0, ), N(0, ), for  = 1, 2, 3, corres2 2ε σ ε σt jt js s j( ) ( )~     ppond to 
observational errors.  (s) are the -dimensionax kt ll vectors of covariates, and  
the corresponding coe�ci

η
eents.   is the slope of the long-term temperature 

trend.
ξ

    is a Gaussian process that captures spatially corωt s( ) rrelated variability. 
 are also Gaussian processes, ad sj ( ) nnd are associated with the discrepancy 

terms.  To specify   and  we use a modi�ed predictive process andωt js d s( ) ( )   a 
predictive process as proposed in Finley et al. (2009a,,b).

Omitting a detailed description of the speci�cation oof the modi�ed predictive 
process (Salazar et al., 2011),, the proposed model can be written as
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 matrix. The time-varying 
coe�cient  evolves as α α ~ (( , ) with ( ).  The discrepancies 
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mmed constant in time.  The parameters are estimated in a BBayesian 

framework using Markov chain Monte Carlo methods..
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