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Outline
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• Comparing winter precipitation.

– NARCCAP NCEP-driven runs.

– Single-factor functional analysis of variance.

• A preliminary study of heat stress.

– NARCCAP GFDL-driven timeslice/regional climate model.

– Two-factor functional analysis of variance.



NARCCAP
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• North American Regional Climate Change Assessment

Program (www.narccap.ucar.edu)

– NCAR, ISU, CCCma, OURANOS, LLNL, GFDL, Hadley, Scripps,

PNNL, USSC, etc.

– NSF, NOAA, DOE, EPA

• Systematically investigate the uncertainties in regional scale projec-

tions of future climate and produce high resolution climate change

projections using multiple RCM and multiple GCM simulations.

• 4 GCMs provide boundary conditions for 6 RCMs

– balanced half-fraction



NCEP Experiment
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• Six regional models

– CRCM (OURANOS/UQAM), ECPC (UC San Diego/Scripps),

HRM3 (Hadley Centre), MM5I (Iowa State U.),

RCM3 (UC Santa Cruz), WRFP (PNNL)

• Boundary conditions supplied by NCEP Reanalysis II.

• 1981 – 2000 (20 years)

• Average daily precipitation (mm) – winter (DJF)

• Interpolated to a common grid: 120× 98 = 11,760 grid boxes
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Yr 1

Yr 2

Yr 3

...

Yr 20

CRCM ECPC HRM3 MM5I RCM3 WRFP

... ... ... ... ... ...
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Yij = µ + αi + εij

• For every grid box (this grid-box is in eastern Nebraska):

– Yij is the response (transformed precipitation) for the ith model

and the jth year.

– µ is a common mean

– αi is a RCM-specific effect

– εij is the error or residual
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Yij = µ + αi + εij

• Testing the null hypothesis H0 : α1 = . . . = α6 = 0:

df SS MS F p-value
RCM 5 0.163 0.0326 15.3 1.75e-11 ? ? ?
Residual 114 0.243 0.00213

• Conclusion: strong evidence of differences in the RCM means.



Analysis of Variance
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Map of pointwise p-values: strong evidence of differences in RCM means

over nearly every grid box in the domain ???
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• Problem: correlated residuals at neighboring grid-boxes.

F Result: invalid inference – any conclusions based on the p-value map

are suspect.
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Yij = µ + αi + εij

• The goal is to partition the variation into specific effects:

– Yij is the vector response (transformed precipitation) for the ith

model and jth year.

– µ is the vector mean common to all RCMs

– αi is the vector RCM-specific effect

– εij is the vector residual.



Functional Analysis of Variance
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Yij = µ + αi + εij

• The innovation is that each of these effects is a surface.

• Each effect is considered a realization from a random process.

• Gaussian fields are often used as prior distributions; inferences about

the effects involve conditioning on the observed output fields.

• Kaufman and Sain (2009, submitted).
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P̂ [s2α > s2ε ]

Pointwise probabilities that the model-to-model variation is larger than

the year-to-year variation (analogous to small p-values in a traditional

ANOVA).



A Statistical Model
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• A common approach involves a three-level hierarchy:

Data model: [data|process, parameters]

Process model: [process|parameters]

Prior model: [parameters]

• Simplifies the problem by factoring a complicated distribution into

a series of conditional distributions.

• Inference involves sampling the posterior distribution:

[process, parameters|data] ∝
[data|process, parameters][process|parameters][parameters]



A Statistical Model

12

• A hierarchical structure:

Data model: Yij ∼ N
(
µi, σ

2
i V(φi)

)
, i = 1, . . . ,6, j = 1, . . . ,20

Process model: µi ∼ N
(
µ, σ2V(φ)

)
Prior model: µ ∼ N

(
NCEP, σ2

µV(φµ)
)

– {Yij} are (transformed) daily average precipitation fields

– {µi} are model specific means; µ is the “grand” mean

– {σ2
i }, σ2, σ2

µ are scale parameters

– {φi}, φ, φµ are spatial dependence parameters

• Prior distributions on scale and spatial dependence parameters are

non-informative.



A Statistical Model
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• An alternative (ANOVA) formulation:

Yij = NCEP + η + αi + εij, i = 1, . . . ,6, j = 1, . . . ,20

– η is a common component to all fields and explains variation

beyond NCEP.

∗ µ = NCEP + η.

– {αi} are RCM-specific components.

∗ µi = NCEP + η + αi.

– {εij} represent year-to-year variation.

• Sain, Kaufman, and Tebaldi (2009, in preparation)



NCEP Experiment

14

• Recall the functional ANOVA model:

Yij = NCEP + η + αi + εij, i = 1, . . . ,6, j = 1, . . . ,20

• Compare µ to NCEP – how do the RCMs on average compare to

the driving model?

• Compare {αi} – how consistent are the RCMs and how do they

compare with each other?

• By drawing samples from the posterior (ensemble), we can address

these questions giving insight to the sources of uncertainty in the

collection of RCM output.
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µ

NCEP
µ−NCEP

• Difference between posterior mean for µ and the mean NCEP.

• Average daily winter precipitation (transformed).
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µ

NCEP
P̂ [µ > NCEP]

Pointwise probabilities that draws from the posterior distribution of µ are

greater than the mean NCEP field. Red (credibly true); white (credibly

false).
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P̂ [s2α > s2ε ]

Pointwise probabilities that the model-to-model variation is larger than

the year-to-year variation.
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• Diagonal elements P̂ [αi > 0]

• Off-diagonal elements P̂ [αi > αj]

• Red (credibly true); Blue (credibly false)



Heat Stress: A Preliminary Study

19

• Two types of dynamic downscaling: a GFDL time-slice and a GFDL-

driven RCM (RCM3; UC Santa Cruz).

– Geophysical Fluid Dynamics Laboratory (GFDL; NOAA)

• Both timeslice and RCM use the A2 scenario.

• Current (1971-2000) and future (2041-2070) runs.

• Focus on summer (May-September) heat stress.

– Output interpolated to a common grid (134 × 83).

• Examine differences in the two models as well as changing heat

stress in North America.



What is a Heat Wave/Heat Stress?
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• “...an extended period of unusually high atmosphere-related heat

stress, which causes temporary modifications in lifestyle, and which

may have adverse health consequences for the affected population.”

– Intensity and duration and local climatology.

• We adopt the definition of heat stress put forth by Meehl and Tebaldi

(2004) in their study of global climate models: maximum of the 3-

day running mean of the overnight minimum temperature.

– Captures persistence and (lack of) overnight cooling.



Heat Stress (Timeslice)
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1980 1990 2000

2050 2060 2070



Heat Stress (RCM)
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1980 1990 2000

2050 2060 2070



Heat Stress (Means)
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Current Future Difference



A Functional ANOVA Model
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• Let Yijt denote the ith model (timeslice vs RCM; i = 0,1), the jth

run (current vs future; j = 0,1), at the tth time (t = 1, . . .30):

Yijt = α0 + iα1 + jα2 + ijα3 + εijt

• Assume each component is generated from a Markov random field:

α0 ∼ N (µcurr,Σ(θ0)) α1 ∼ N (0,Σ(θ1))

α2 ∼ N
(
µdiff ,Σ(θ2)

)
α3 ∼ N (0,Σ(θ3))

• µcurr and µdiff are average fields of the current and difference in

heat stress computed from the driving global GFDL model.



A Functional ANOVA Model
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• The error term, εijt is broken up into two pieces:

εijt = γj(t− 15.5) + ηt

where

γj ∼ N
(
γ∗j , σ2

γ

)
ηt ∼ N (0,Σ(θt))

• γ∗j are average slopes from the control and future runs of the driving

global GFDL model.
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100 draws from the posterior of γ0 (left) and γ1 (right).



Posterior Means

27

ᾱ0 ᾱ1

ᾱ2 ᾱ3

• α0 represents

current timeslice.

• α1 adjusts for

current RCM.

• α2 adjusts for fu-

ture run.

• α3 is an interac-

tion.



Posterior Means
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ᾱ0 ᾱ1

ᾱ2 ᾱ3

• α0 represents

current timeslice.

• α1 adjusts for

current RCM.

• α2 adjusts for fu-

ture run.

• α3 is an interac-

tion.



A Quick Look at Temperatures
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ᾱ0 ᾱ1 ᾱ2 ᾱ3

P̂ [α0 > µcurr] P̂ [α1 > 0] P̂ [α2 > µdiff ] P̂ [α3 > 0]

JJA Ave Temp – p < 0.05 – blue; p > 0.95 – red.
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• A single draw from the posterior for α2.

• Contour represents an increase in heat stress by 3.0 degrees.
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• Posterior mean for α2.

• Contour lines represent an increase in heat stress by 3.0 degrees for

20 randomly sampled draws from the posterior of α2.
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• Pointwise posterior probability that α2(s) > 3.0.

• Regions where all draws are greater than 3.0 (inside wide contour)

or where no draws were greater than 3.0 (outside thin contour).
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Varying thresholds (τ = 2.0,3.0,4.0) for timeslice (α2; top) and RCM

(α2 + α3; bottom).
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Pointwise probability for change greater than 3.0 for both models.



Questions?
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ssain@ucar.edu
http://www.image.ucar.edu/∼ssain

Thank You!


