Spatial Analysis of Regional Climate Experiments: Functional ANOVA and Heat Stress

Stephan R. Sain Geophysical Statistics Project Institute for Mathematics Applied to Geosciences National Center for Atmospheric Research Boulder, CO

Claudia Tebaldi, Climate Central; Cari Kaufman, UC Berkeley; Doug Nychka, Linda Mearns, NCAR.

Supported by NSF DMS/ATM.

NARCCAP Users Meeting, Boulder, CO, 9/11/09

Outline

- Comparing winter precipitation.
 - NARCCAP NCEP-driven runs.
 - Single-factor functional analysis of variance.
- A preliminary study of heat stress.
 - NARCCAP GFDL-driven timeslice/regional climate model.
 - Two-factor functional analysis of variance.

NARCCAP

- North American Regional Climate Change Assessment Program (www.narccap.ucar.edu)
 - NCAR, ISU, CCCma, OURANOS, LLNL, GFDL, Hadley, Scripps, PNNL, USSC, etc.
 - NSF, NOAA, DOE, EPA
- Systematically investigate the uncertainties in regional scale projections of future climate and produce high resolution climate change projections using multiple RCM and multiple GCM simulations.
- 4 GCMs provide boundary conditions for 6 RCMs
 - balanced half-fraction

NCEP Experiment

- Six regional models
 - CRCM (OURANOS/UQAM), ECPC (UC San Diego/Scripps), HRM3 (Hadley Centre), MM5I (Iowa State U.), RCM3 (UC Santa Cruz), WRFP (PNNL)
- Boundary conditions supplied by NCEP Reanalysis II.
- 1981 2000 (20 years)
- Average daily precipitation (mm) winter (DJF)
- Interpolated to a common grid: $120 \times 98 = 11,760$ grid boxes

Analysis of Variance

- For every grid box (this grid-box is in eastern Nebraska):
 - Y_{ij} is the response (transformed precipitation) for the *i*th model and the *j*th year.
 - $-\mu$ is a common mean
 - α_i is a RCM-specific effect
 - $-\epsilon_{ij}$ is the error or residual

Analysis of Variance

• Testing the null hypothesis $H_0: \alpha_1 = \ldots = \alpha_6 = 0$:

	df	SS	MS	F	p-value	
RCM	5	0.163	0.0326	15.3	1.75e-11	***
Residual	114	0.243	0.00213			

• Conclusion: strong evidence of differences in the RCM means.

Analysis of Variance

Map of pointwise p-values: strong evidence of differences in RCM means over nearly every grid box in the domain ???

- Problem: correlated residuals at neighboring grid-boxes.
- ★ Result: invalid inference any conclusions based on the p-value map are suspect.

Functional Analysis of Variance

- The goal is to partition the variation into specific effects:
 - \mathbf{Y}_{ij} is the vector response (transformed precipitation) for the *i*th model and *j*th year.
 - μ is the vector mean common to all RCMs
 - $lpha_i$ is the vector RCM-specific effect
 - $-\epsilon_{ij}$ is the vector residual.

Functional Analysis of Variance

- The innovation is that each of these effects is a *surface*.
- Each effect is considered a realization from a random process.
- Gaussian fields are often used as prior distributions; inferences about the effects involve conditioning on the observed output fields.
- Kaufman and Sain (2009, submitted).

Pointwise probabilities that the model-to-model variation is larger than the year-to-year variation (analogous to small p-values in a traditional ANOVA).

A Statistical Model

• A common approach involves a three-level hierarchy:

Data model:	[data process, parameters]
Process model:	[process parameters]
Prior model:	[parameters]

• Simplifies the problem by factoring a complicated distribution into a series of conditional distributions.

• Inference involves sampling the posterior distribution:

 $[process, parameters|data] \propto [data|process, parameters][process|parameters][parameters]$

A Statistical Model

• A hierarchical structure:

Data model: $\mathbf{Y}_{ij} \sim \mathcal{N}\left(\boldsymbol{\mu}_i, \sigma_i^2 \mathbf{V}(\phi_i)\right), \quad i = 1, \dots, 6, j = 1, \dots, 20$ Process model: $\boldsymbol{\mu}_i \sim \mathcal{N}\left(\boldsymbol{\mu}, \sigma^2 \mathbf{V}(\phi)\right)$ Prior model: $\boldsymbol{\mu} \sim \mathcal{N}\left(\mathbf{NCEP}, \sigma_{\boldsymbol{\mu}}^2 \mathbf{V}(\phi_{\boldsymbol{\mu}})\right)$

- $\{\mathbf{Y}_{ij}\}$ are (transformed) daily average precipitation fields
- $\{\mu_i\}$ are model specific means; μ is the "grand" mean
- $\{\sigma_i^2\}$, σ^2 , σ_μ^2 are scale parameters
- $\{\phi_i\}$, ϕ , ϕ_{μ} are spatial dependence parameters
- Prior distributions on scale and spatial dependence parameters are non-informative.

A Statistical Model

• An alternative (ANOVA) formulation:

 $Y_{ij} = NCEP + \eta + \alpha_i + \epsilon_{ij}, i = 1, ..., 6, j = 1, ..., 20$

- η is a common component to all fields and explains variation beyond NCEP.
 - * $\mu = \mathsf{NCEP} + \eta$.
- $\{\alpha_i\}$ are RCM-specific components.

* $\mu_i = \mathsf{NCEP} + \eta + \alpha_i$.

- $\{\epsilon_{ij}\}$ represent year-to-year variation.
- Sain, Kaufman, and Tebaldi (2009, in preparation)

NCEP Experiment

• Recall the functional ANOVA model:

 $Y_{ij} = NCEP + \eta + \alpha_i + \epsilon_{ij}, i = 1, ..., 6, j = 1, ..., 20$

- Compare μ to NCEP how do the RCMs on average compare to the driving model?
- Compare $\{\alpha_i\}$ how consistent are the RCMs and how do they compare with each other?
- By drawing samples from the posterior (ensemble), we can address these questions giving insight to the sources of uncertainty in the collection of RCM output.

- Difference between posterior mean for μ and the mean NCEP.
- Average daily winter precipitation (transformed).

Pointwise probabilities that draws from the posterior distribution of μ are greater than the mean NCEP field. Red (credibly true); white (credibly false).

Pointwise probabilities that the model-to-model variation is larger than the year-to-year variation.

Heat Stress: A Preliminary Study

- Two types of dynamic downscaling: a GFDL time-slice and a GFDLdriven RCM (RCM3; UC Santa Cruz).
 - Geophysical Fluid Dynamics Laboratory (GFDL; NOAA)
- Both timeslice and RCM use the A2 scenario.
- Current (1971-2000) and future (2041-2070) runs.
- Focus on summer (May-September) heat stress.
 - Output interpolated to a common grid (134 \times 83).
- Examine differences in the two models as well as changing heat stress in North America.

What is a Heat Wave/Heat Stress?

- "...an extended period of unusually high atmosphere-related heat stress, which causes temporary modifications in lifestyle, and which may have adverse health consequences for the affected population."
 - Intensity and duration and local climatology.
- We adopt the definition of heat stress put forth by Meehl and Tebaldi (2004) in their study of global climate models: maximum of the 3day running mean of the overnight minimum temperature.
 - Captures persistence and (lack of) overnight cooling.

Heat Stress (Timeslice)

D -140 -120 -100 -80 -60

Heat Stress (RCM)

Heat Stress (Means)

A Functional **ANOVA** Model

• Let Y_{ijt} denote the *i*th model (timeslice vs RCM; i = 0, 1), the *j*th run (current vs future; j = 0, 1), at the *t*th time (t = 1, ..., 30):

$$\mathbf{Y}_{ijt} = \boldsymbol{\alpha}_0 + i\boldsymbol{\alpha}_1 + j\boldsymbol{\alpha}_2 + ij\boldsymbol{\alpha}_3 + \boldsymbol{\epsilon}_{ijt}$$

Assume each component is generated from a Markov random field:

$$egin{aligned} lpha_0 &\sim \mathcal{N}\left(oldsymbol{\mu}_{curr}, \Sigma(oldsymbol{ heta}_0)
ight) & lpha_1 &\sim \mathcal{N}\left(0, \Sigma(oldsymbol{ heta}_1)
ight) \ lpha_2 &\sim \mathcal{N}\left(oldsymbol{\mu}_{diff}, \Sigma(oldsymbol{ heta}_2)
ight) & lpha_3 &\sim \mathcal{N}\left(0, \Sigma(oldsymbol{ heta}_3)
ight) \end{aligned}$$

• μ_{curr} and μ_{diff} are average fields of the current and difference in heat stress computed from the driving global GFDL model.

A Functional ANOVA Model

• The error term, ϵ_{ijt} is broken up into two pieces:

$$\epsilon_{ijt} = \gamma_j(t - 15.5) + \eta_t$$

where

$$\gamma_j \sim \mathcal{N}\left(\gamma_j^*, \sigma_\gamma^2\right) \qquad \qquad \boldsymbol{\eta}_t \sim \mathcal{N}\left(0, \boldsymbol{\Sigma}(\boldsymbol{\theta}_t)\right)$$

• γ_j^* are average slopes from the control and future runs of the driving global GFDL model.

100 draws from the posterior of γ_0 (left) and γ_1 (right).

Posterior Means

- α_0 represents current timeslice.
- α₁ adjusts for current RCM.
- α₂ adjusts for future run.
- α_3 is an interaction.

Posterior Means

- α_0 represents current timeslice.
- α₁ adjusts for current RCM.
- α₂ adjusts for future run.
- α_3 is an interaction.

A Quick Look at Temperatures

JJA Ave Temp - p < 0.05 -blue; p > 0.95 -red.

- A single draw from the posterior for α_2 .
- Contour represents an increase in heat stress by 3.0 degrees.

- Posterior mean for α_2 .
- Contour lines represent an increase in heat stress by 3.0 degrees for 20 randomly sampled draws from the posterior of α_2 .

- Pointwise posterior probability that $\alpha_2(s) > 3.0$.
- Regions where all draws are greater than 3.0 (inside wide contour) or where no draws were greater than 3.0 (outside thin contour).

Varying thresholds ($\tau = 2.0, 3.0, 4.0$) for timeslice (α_2 ; top) and RCM ($\alpha_2 + \alpha_3$; bottom).

Pointwise probability for change greater than 3.0 for both models.

Questions?

ssain@ucar.edu http://www.image.ucar.edu/~ssain

Thank You!