

Canada

Preliminary intercomparison results for NARCCAP, other RCMs, and statistical downscaling over southern Quebec

Philippe Gachon

Research Scientist Adaptation & Impacts Research Division, Atmospheric Science and Technology Directorate Environment Canada @ McGill University

2009 NARCCAP Users' Meeting September 10-11, 2009 - NCAR Foothills Lab, EOL Atrium

NSERC-SRO project (Canada), Oct. 2007-2010

"Probabilistic assessment of regional changes in climate variability and

extremes"

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

Canada

Team members (Canada):

- 1. Universities
- McGill (PI): Van TV Nguyen
- UQAM: René Laprise
- **INRS-ETE:** Taha Ouarda & André St-Hilaire ٠
- **University of British Columbia: William Hsieh** ٠
- 2. Research Lab.
- **Environment Canada (EC)**: Xuebin Zhang (INRS) & Philippe Gachon (UQÀM/McGill, co-PI)

Contact Persons & Collaborators (International-National):

- **ENSEMBLES**: Clare Goodess (CRU, UK), Jens Christensen (DMI, Denmark) & Colin Jones (SMHI, Sweden)
- **NARCCAP:** Linda Mearns (NCAR, US)
- Canadian Climate Centre for modeling & analysis: Greg Flato (EC, • Canada)
- Canadian Climate Change Scenarios Network (CCCSN): Neil Comer (EC)

Project Objectives

Three main objectives:

- Development and application of statistical downscaling methods in order to generate (multi-site & multivariate) climate information
- II) Development and evaluation of future high-resolution RCMs. Applying statistical downscaling (SD) methods from GCM to RCM resolutions and intercompare RCMs & SDs
- III) Generate high resolution probabilistic climate change scenarios including extremes and variability with assessments of their associated uncertainties (from various downscaling approaches)

Metric of the Downscaling Scheme & simulations

Uncertainties related to GCM/RCM boundary forcings, Downscaling Methods (2 families) & Emission Scenarios (2 SRES)

Research objectives from RCMs runs from NARCCAP (and others)

- Inter-compare different RCMs (NCEP driven) to further reconstruct observed extremes (precipitation, temperature) for the Quebec/Ontario/BC region;
 - Evaluate errors or added values due to RCM (NCEP vs GCMs driven conditions): low & high frequency variability;
 - Test and choice the appropriate methodology of interpolation to validate the RCM outputs with gridded observed data (e.g., Cubic Spline method or other methods);
- Frequency analysis (occurrence & intensity) of the extremes as simulated by the RCMs;
- Develop and validate preditors from selected RCM runs to be used in Statistical Downscaling models;
- 4. Inter-compare different RCMs vs Statistical Downscaling models and construct probabilistic scenarios (uncertainties with confidence interval information).

Run	Model Version	Domain Resolutio	& m ^[1]	Driving atmosphe oceanic data	eric &	GHG+A evolution		Time window		(13 series)						
abf	abf			NCEP & AMIP	02		1	1960-dec - 1990-d	ес							
abg	Canadian	an AMNO 45 km 7.1 & 29L		ERA40 & AMIF	202		1	1960-dec - 1990-d	ес	7 R(:Ms	runs				
abi	RCM.3.7.1			CGCM2 3rd member (6h)		Observed	1	1960-dec - 1990-d	ес							
abj				CGCM2 3rd memb	oer (6h)	SRES A2	2	2040-dec - 2070-d	ес	\Box av	available from					
acu		QC 45 km & 29L 1 AMNO 45 km & 29L		CGCM3 4th member (Dbs + SRES A2	1	1960-dec - 2100-n	ov							
acy	Canadian			ERA40 & AMIP02				1960-dec - 2002-j	ul		Ouranos,					
acw	RCM.4.1.1			ERA40 (6h) & AN	- MIP03 - 05 (6h)			1960-dec - 2002-j	ul							
ade				NCEP & AMIP05			1	960-dec - 2005-m	ay							
adj	Canadian	AMNO 45 km		CGCM3 4th memb	oer (6h)	SDES A2	1	1960-dec - 1990-d	ес							
adk	RCM.4.2.0			CGCM3 4th memb	oer (6h)	SRES AZ	2	2040-dec - 2070-d	ес							
abx				ERA40 (6-hrs	5)	_		1961-ian - 2001-de	эс	NARCCAP						
	4.4	OGG & 3	81L	ERA40 (6-hrs) &				Phase I			Pha	ase II				
acb				[ARPEGE.3 coupled OPA A2]				NCEP		GFDL	CGCM3	HADCM3	CCSM			
Run		Model I Version No		Domain & Dr. Resolution & atmo No of grid Points d		CRC	м	finished			finished		planned			
						ECP	с	finished		running		planned				
LAM_]	NA_ERA	ERA		North America & El		HRM	3	finished		planned		finished				
40_().5deg	GEMCLI	150lo	on x 1381at pts	0.5de	ММ5	51	finished				planned	finished			
TANT		M CRCM5	North America &			RCM	3	finished		finished	planned					
40_0	.25deg		0 30010	0.25deg & 300lon x 276lat pts		WRF	P	finished			planned		finished			
		Environ	ment	Environneme	nt					finite						
Canada Canada				ne	slices		finished			running						

(1) Assessment of RCMs simulations (daily surface variables) based on extreme indices

(vs gridded observed & reanalysis information)

Precipitation indic	es			
Frequency Prcp1		Wet days (precipitation>1 mm), [%]	Season	N/a
Intensity SDII		Precipitation intensity (rain/rainday), [mm/day]	Season	SDII
	CDD	Max no of consecutive dry days (precipitation<1 mm), [day]		CDD
	R3d	Greatest 3 days total rainfall [mm]		R5d
Duration and Extremes	Prec90pc	90th percentile of rainday amounts [mm/day]	Season	R95t and
LAtomos	R90p	% days with precipitation > 90 th percentile calculated for wet days on the basis of 61-90 period, [%]	Season	N° of days with prec. >95 th perc.
Temperature indic	es			
	Fr/Th	Days with freeze and thaw cycle $(Tmax > 0^{\circ}C \text{ and } Tmin < 0^{\circ}C)$, [day]	Month	N/a
Daily variability	FdTotal number of frost days (days with absolute minimum temperature < 0 deg C), [day]		Month	Fd
	Tmin10pb	10 th percentile of daily minimum temperature, [°C]	Season	N/a
Cold	Tmax10pb	max10pb 10 th percentile of daily maximum temperature, [°C]		N/a
Extremes	TN10p% days Tmin<10th percentile calculated for each calendar day (61- 90 based period) using running 5 day window, [%]		Season	N/a
	Tmin90pb	90 th percentile of daily minimum temperature, [°C]	Season	N/a
Warm	Tmax90pb	90 th percentile of daily maximum temperature, [°C]	Season	N/a
Extremes	ТХ90р	% days Tmax>90 th percentile calculated for each calendar day (61-90 based period) using 5 days window, [%]	Season	N/a

Example: Number of Days with Daily PCP \geq 1 mm (Prcp1) In %

Winter: Dec to Feb

A. CRCM nested with CGCM2 #3

- Seasonal Mean over 1961-1990
- **B.** CRCM nested with CGCM3 T47 #4
- C. ARPEGE nested with ERA40

Summer: Jun to Aug

A. CRCM nested with CGCM2 #3

Canada

B. CRCM nested with CGCM3 T47 #4

C. ARPEGE nested with ERA40

Canada

Environnement Environment Canada

Example: Intensity Index (SDII): Mean intensity per wet day

In mm/day

Winter: Dec to Feb

A. CRCM nested with CGCM2 #3

- Seasonal Mean over 1961-1990 B. CRCM nested with CGCM3 T47 #4
- **C.** ARPEGE nested with ERA40

Summer: Jun to Aug

A. CRCM nested with CGCM2 #3

Canada

B. CRCM nested with CGCM3 T47 #4

C. ARPEGE nested with ERA40

Environnement Environment Canada

Example: 10th Percentile of Daily Tmin

Winter: Dec to Feb

A. CRCM nested with CGCM2 #3

- C. ARPEGE nested with ERA40

In °C

Summer: Jun to Aug

A. CRCM nested with CGCM2 #3

B. CRCM nested with CGCM3 T47 #4

C. ARPEGE nested with ERA40

Environment Environnement Canada Canada

Seasonal Mean over 1961-1990

B. CRCM nested with CGCM3 T47 #4

Example: 90th Percentile of Daily Tmax

Winter: Dec to Feb

A. CRCM nested with CGCM2 #3

Seasonal Mean over 1961-1990

C. ARPEGE nested with ERA40

Summer: Jun to Aug

A. CRCM nested with CGCM2 #3

B. CRCM nested with CGCM3 T47 #4

C. ARPEGE nested with ERA40

In °C

Environnement Canada

(1) Select the appropriate method of interpolation to validate the RCM outputs with gridded data

e.g., Cubic Spline method or others & compare with other products: ex.10-km gridded dataset from Hutchinson et al. (2009) & regional reanalysis (NARR)

(3) ATMOSPHERIC INPUT **VARIABLES:** Predictors development for SDs

Main Variables used from GCMs (Sfc & Atm. Levels):

- Temperatures
- Pressure or Geopotential Height
- Specific/Relative Humidity
- Wind components (U & V)

PREDICTOR VARIABLES

Mean sea level pressure

1000hPa Wind Speed

1000hPa U-component

1000hPa V-component

1000hPa Vorticity

1000hPa Wind Direction

1000hPa Divergence

500hPa Wind Speed

500hPa U-component

500hPa V-component

500hPa Vorticity

500hPa Geopotential

500hPa Wind Direction

500hPa Divergence

850hPa Wind Speed

850hPa U-component

850hPa V-component

850hPa Vorticity

850hPa Geopotential

850hPa Wind Direction

850hPa Divergence

500hPa Specific Humidity

850hPa Specific Humidity

1000hPa Specific Humidity

Temperature at 2m

(3) ATMOSPHERIC INPUT VARIABLES: Predictors development for SDs

Main Variables used from RCMs (Sfc & Atm. Levels):

ncy

Variable Name (Predictor)	Unit	Level(s)	Freque
Ground Cover	[0 or 1]	at/near surface	
Orography Height	m		
Mean Sea Level Pressure	Pa		
Ground Temperature	°C		
Accumulated Precipitations	mm		
Minimum Screen Temperature	°c		
Maximum Screen Temperature	°C		
Sensible Heat Flux	W/m ²		
Minimum of Sensible Heat Flux	W/m²		
Maximum Sensible Heat Flux	W/m ²		
Env	vironment	Environnement	1

Canada

	Air Temperature	·c	Standard Pressure Levels: 1000, 925, 850, 700, 600 and 500 hPa	
	Geopotential	m²/s²		daily
_	Specific Humidity	kg/kg		
	Eastward Wind	m/s		
	Northward Wind	m/s		
	Vertical Velocity	m/s		
	Wind Speed	m/s		
	Wind Direction	deg North		
	Divergence	s ⁻¹		
	Relative Vorticity	s ⁻¹		
	Absolute Vorticity	s ⁻¹		
	Minimum of Temperature Advection	K/s		
	Maximum of Temperature Advection	K/s		
	Minimum of Humidity Advection	kg/(s*kg)		
	Maximum of Humidity Advection	kg/(s*kg)		
	Minimum of Abs. Vorticity Advection	1/s ²		
	Maximum of Abs. Vorticity Advection	1/s ²		
	Geopotential Thickness	m²/s²	Between: 925-1000 hPa 850-925 hPa 700-850 hPa 600-700 hPa 500-600 hPa	

(3) ATMOSPHERIC INPUT VARIABLES issues from NARCCAP runs (Available information ?)

Table 5: Atmospheric fields (3-D, 3-hourly)							
 Var.	Long Name	Units	Notes				
cli	Cloud Ice Fraction of Layer	1	instantaneous				
clw	Cloud Liquid Water Fraction of Layer	1	instantaneous				
hus	Specific Humidity	kg kg-1	instantaneous				
ta	Temperature	К	instantaneous				
ua	Zonal Wind Component	m s-1	instantaneous				
va	Meridional Wind Component	m s-1	instantaneous				
wa	Vertical Wind Component	m s-1	instantaneous				

3-D fields have not been yet provided every 25 hPa from 1050 hPa to 25 hPa, i.e. hence predictors from NARCCAP runs

cannot be developed

	Table 1	Table 2	Table 3	Table 4	Table 5
CRCM	done	done	qc	qc	post
ECPC	done	done	post	post	post
HRM3	done	done	qc	post	post
MM5I	post	done	post	post	post
RCM3	post	done	done	post	post
WRFP	post	done	post	post	post

(3) ATMOSPHERIC INPUT VARIABLES: Predictors development for SDs

Example of RCM predictor: Daily Maximum of Horizontal Advection of Humidity from CRCM vs NARR

Monthly Mean comparison for July over 1979-2001

between RCM and NARR

A. CRCM4.1.1 nested with ERA40 B. CRCM4.1.1 nested with NCEP C. NARR interpolated on PS grid of CRCM

@ 500 hPa

B. CRCIM4.1.1 nested with NCEP

Environment Environnement Canada Canada

 $\times 10^{-8} \text{ kg/(kg \cdot s)}$

(4) CONSTRUCT PDF of future climate change from an ensemble of statistical & dynamical downscaling models

Ensemble of runs from CRCM & ASD - PDF of Tmax Example in Chaudière River basin, 2041-2070 vs 1961-1990

PDF: DailyTMAX 1961-1990 vs 2041-2070 at Chaudiere

Next Steps for Statistical Downscaling Research, RCMs evaluation & climate scenarios

- Improve the interannual variability of the multi-site MLR, i.e. link to atmospheric variables (downscaling) in modifying the parameters in the stochastic part & using Regional-scale predictors;
- Develop multivariate statistical downscaling approaches (done for multisite & multivariate Tmin and Tmax);
- Develop/Identify Links between predictand and other regionalscale predictors from RCMs runs in extreme occurrences (from new predictors & test the stability of the statistical relationships);
- Develop ensembles runs with various GCMs/RCMs SDs driven conditions & with RCMs (from Ouranos, CRCMD & NARCCAP runs, i.e. 13 independent RCM runs) and probabilistic scenarios.

DRAFT – Page 19 – September-14-09

Web sites links:

Climate Analysis Group (Projects & Publications) : http://quebec.ccsn.ca/GAC/

Data Access Integration : <u>http://quebec.ccsn.ca/local/data/DAI-e.html</u>

Canadian Climate Change Scenarios Network (CCCSN) : http://www.cccsn.ca

Thank you for your attention!

