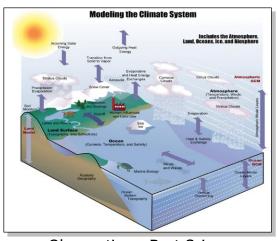


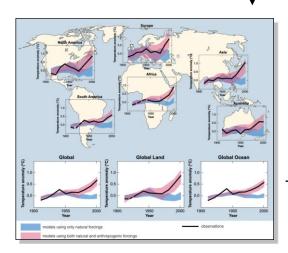
Presentation to: 2009 NARCCAP Users' Meeting

11 September 2009

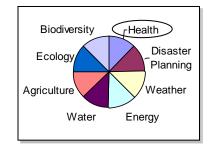
Glenn Higgins

Atmospheric Sciences & Engineering Department Northrop Grumman


Introduction

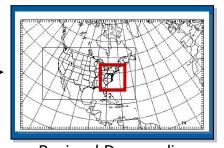

- IPCC reports have focused considerable attention on climate change and global and regional climate modeling
- However, there is a gap between the science products that climate models produce and the "engineering" products that planners need to:
 - Support mitigation and adaptation efforts at local and regional levels
- Today I will discuss NG's strategy and efforts to bridge the gap:
 - Through Regional Climate (downscaling) and Decision Aid modeling
- Decision Aids translate scientific products from climate models to engineering products for local and regional planners
- We have used NARCCAP data to develop example decision aid products in or to engage with potential users- some examples to follow

Climate Modeling and Decision Aids



Observations, Best Science, and Physical Models

Raw Global-scale model results

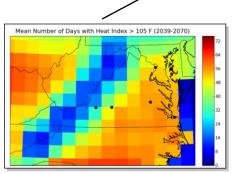

Users

Decision Aids

Regional Climate Models

Global Climate Models

Global Observing System

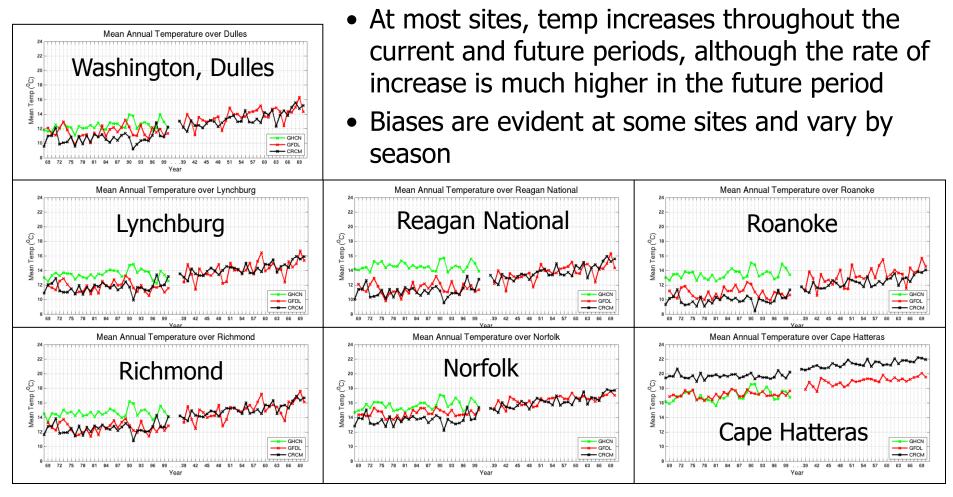


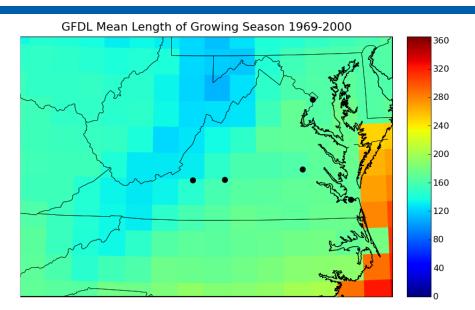
Regional Downscaling Captures local effects and better physics

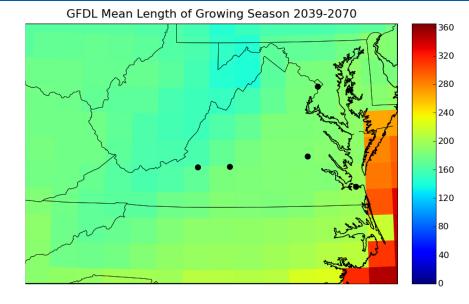
Actionable decision aid

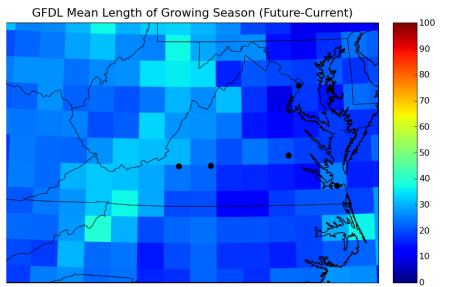
		Mean "Oppressive" Days Per Year (Models have monthly biases with respect to GHCN removed)			Change in Deaths due to Change in Oppressive Days		
						Additional	
					Deaths per	Deaths for	
City	Metro Pop	Current	Future	Change	Million	Metro	
Richmond	1.2 M	17.47	47.22	29.8	26.78	32	
Lynchburg	246 K	11.91	36.56	24.7	22.19	5	
Roanoke	296 K	10.69	34.16	23.5	39.90	12	
Wash. DC	5.3 M	16.31	35.56	19.3	17.33	92	
Norfolk	1.8 M	13.28	38.31	25.0	22.53	40	
'Change' is Future value - Current value							

Empirical and explicit decision domain modeling

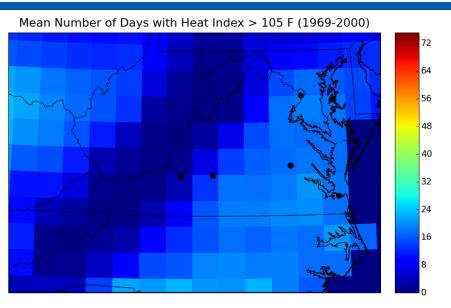

High resolution regional model results

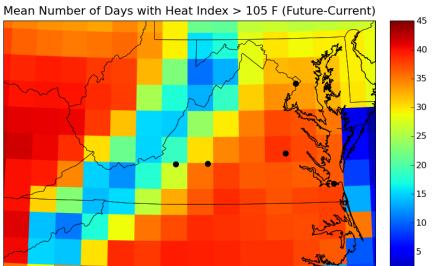

Some Examples of Climate Products and Decision Aids

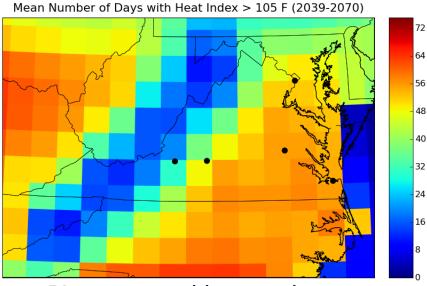

Some Examples Climate Products and Decision Aids Annual Temperatures for Several Cities


Plots below show the mean annual temperature over each site

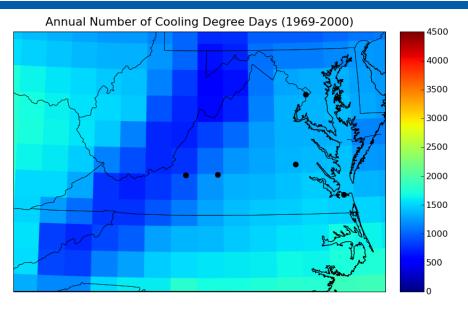
Some Examples Climate Products and Decision Aids Agriculture: VA Growing Season




Bias corrected by month	Days in Growing Season			
	Current	Future		
Richmond	179	196		
Lynchburg	171	185		
Roanoke	166	187		
Washington DC	157	176		
Norfolk	196	228		


Use: Agricultural planning, crop selection and rotation, trends in food sources

Some Examples Climate Products and Decision Aids Health: VA Heat Index


Bias corrected by month

		Mean "Oppressive" Days					
		Per Year (Models have			Change in Deaths due to		
		monthly biases with			Change in Oppressive		
		respect to GHCN removed)			Days		
						Additional	
					Deaths per	Deaths for	
City	Metro Pop	Current	Future	Change	Million	Metro	
Richmond	1.2 M	17.47	47.22	29.8	26.78	32	
Lynchburg	246 K	11.91	36.56	24.7	22.19	5	
Roanoke	296 K	10.69	34.16	23.5	39.90	12	
Wash. DC	5.3 M	16.31	35.56	19.3	17.33	92	
Norfolk	1.8 M	13.28	38.31	25.0	22.53	40	
'Change' is Future value - Current value							

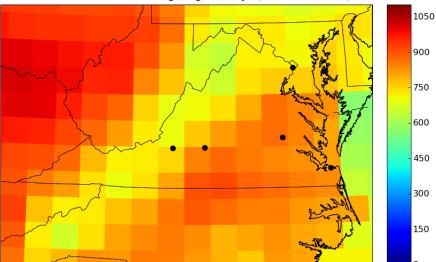
Use: City planning, emergency planning, public facility planning, HVAC planning

Some Examples Climate Products and Decision Aids Energy: VA Cooling Degree Days and Energy Demand

Annual Number of Cooling Degree Days (2039-2070)

4500

4000


3500

2500

1000

500

Annual Number of Cooling Degree Days (Future-Current)

Bias corrected by month

					Change in		
					Residential		
		Mean CDD Per Year			Electricity	Demand	
	Metro				KWHr/	Metro	
City	Pop	Current	Future	Change	Capita	MW-Hr	
Richmond	1.2 M	1538	2480	942	452	548	
Lynchburg	246 K	1206	2088	882	423	104	
Roanoke	296 K	1202	2040	838	377	112	
Wash. DC	5.3 M	1134	1850	716	286	1518	
Norfolk	1.8 M	1708	2604	896	430	772	

'Change' is Future value - Current value

Use: Strategic energy planning, future energy demand, power plant needs, alterative power sources

Summary

- Northrop Grumman is reaching out to regional and local planners in order to understand user needs for climate information
- The combination of global and regional climate models and user-oriented decision aids can provide critical information to planners
- Using past climatic data as a surrogate for future planning is not consistent with IPCC projections
- Although climate models have weaknesses, they are improving and offer the best guidance for planning today
- Running multiple simulations with multiple climate models creates a range of solutions and permits probabilistic estimates
- Interaction with users is critical to optimally tailoring decision aid development and making best use of climate data
- NARCCAP data have helped us develop example decision aid products and understand issues with the data, such as biases and differences among models

NORTHROP GRUMMAN