Fine-resolution global time slice simulations

Philip B. Duffy1,2,3

Collaborators: G. Bala1, A. Mirin1

1Lawrence Livermore National Laboratory
2University of California, Merced
2University of California, Davis

NARRCAP Users’ Meeting, February 14, 2008
THIS TALK APPROVED FOR
Why include global-domain simulations in NARCCAP?

- Nice to have global-domain results
- Interesting to compare global time-slice results to nested model results
Advantages/disadvantages vs. nested model approach

Advantages:
• Nice to have global-domain results.
• Needed input data (SST + sea ice extents) are minimal, and universally available.
• Results are not subject to degradation by biases in lateral boundary conditions.

Disadvantages:
• Regional-scale results are not constrained by lateral boundary conditions.
• More demanding of CPU.
• Larger volume of output data.
What model did I use?

- Fine-resolution version of NCAR CAM3.1 global atmospheric model
- Finite Volume dynamical core
- 0.625 deg. (longitude) x 0.5 deg. (latitude) grid spacing
- *Ad hoc* retuning of parameterizations performed in collaboration with Hack *et al.* of NCAR
I performed two simulations

1. “Control” or “AMIP” simulation
 2. Driven by observed SSTs and sea ice extents

2. “Future” or “A2” simulation
 1. Covers 2041-2060
 2. Driven by
 \[\text{SST} = \text{SST}_{\text{obs}} + \text{SST}_{\text{ccsm}}^\text{future} - \text{SST}_{\text{ccsm}}^\text{present}. \]
 \text{SST}_{\text{ccsm}} from simulation of A2 emissions scenario performed with coarse-resolution version of CCSM

3. This method of deriving SSTs provides first-order correction of biases in SSTs of CCSM model
1. All quantities specified in NARCCAP protocol
2. Additional monthly-mean stuff
3. 3-hourly 3-d atmospheric fields needed to drive a nested atmospheric model. (This is 80% of the data volume).
 - Raw data volume: 40 Tbyte
 - After interpolation to specified pressure levels: 65 Tbyte.
Annual Mean Precipitation

“Observations”

Nested regional model at 9 km driven by global model at ~100 km

cm/yr
1. Simulations are complete.
2. Interpolation to specified atmospheric pressure levels is complete.
3. Conversion to CF-compliant format is not complete (although results are already in netcdf format)
4. AMIP results reside in NERSC archival storage
5. A2 results reside in NCAR mass storage
6. It’s difficult to do anything with this much data!
AMIP simulation resembles planet earth

Reference height temperature over land
AMIP Precipitation...
AMIP annual reference height temperature

CAM vs. Legates & Wilmott (1920-1980)
AMIP annual reference height temperature

CAM vs. Wilmott & Matsura (1950-1999)
Reference height temperature biases

DJF

- d26_amip - WILLMOTT
 - mean = 0.41
 - rmse = 3.39

- d26_amip - LEGATES
 - mean = -0.56
 - rmse = 3.14

- d26_amip - IPCC/CRU
 - mean = 0.35
 - rmse = 3.29

JJA

- d26_amip - WILLMOTT
 - mean = 0.48
 - rmse = 3.27

- d26_amip - LEGATES
 - mean = -0.36
 - rmse = 3.69

- d26_amip - IPCC/CRU
 - mean = 0.09
 - rmse = 2.67
Biases in JJA temperatures are inherited from NCAR coarse-resolution model version.

- **d26_amip - WILLMOTT**
 - mean = 0.48
 - rmse = 3.27

- **d26_amip - LEGATES**
 - mean = -0.36
 - rmse = 3.69

- **d26_amip - IPCC/CRU**
 - mean = 0.09
 - rmse = 2.67

- **fv2x2.5_d86amip - WILLMOTT**
 - mean = 0.54
 - rmse = 3.31

- **fv2x2.5_d86amip - LEGATES**
 - mean = -0.32
 - rmse = 3.60

- **fv2x2.5_d86amip - IPCC/CRU**
 - mean = 0.34
 - rmse = 2.83

LLNL 0.625 x 0.5

NCAR 2.5 x 2.0
Temperature biases seem to result from cloud errors.
Anomalies in daily maximum near-surface temperatures
Anomalies in daily minimum near-surface temperatures
AMIP seasonal precipitation biases

DJF
- **d26_amip - GPCP**
 - mean = 0.24
 - rmse = 1.42
 - mm/day

- **d26_amip - XIE-ARKIN**
 - mean = 0.22
 - rmse = 1.50
 - mm/day

- **d26_amip - WILLMOTT**
 - mean = 3.08
 - rmse = 13.84
 - cm

JJA
- **d26_amip - GPCP**
 - mean = 0.30
 - rmse = 1.89
 - mm/day

- **d26_amip - XIE-ARKIN**
 - mean = 0.14
 - rmse = 1.94
 - mm/day

- **d26_amip - WILLMOTT**
 - mean = 1.18
 - rmse = 18.47
 - cm
Daily precipitation amounts

Observations

- NOAA observations
- GPCP observations
- 2.0 x 2.5 deg. CSRM
- 2.0 x 2.5 deg 64-cell CSRM
- 2.0 x 2.5 deg 32-cell CSRM
- 2.0 x 2.5 deg. 128-cell CSRM
- 1.0 x 1.25 deg. CSRM
- 1.0 x 1.25 deg. CSRM
- 0.5 x 0.625 deg.
QuickTime™ and a Cinepak decompressor are needed to see this picture.
Next time I’ll be smarter about the difficulties of handling 60+ Tbyte of output.

Results look like planet earth, but...

Near-surface temperatures have large biases in some regions, especially in summer.

These seem to be related to cloud errors and are inherited from the coarse-resolution model version.

Daily temperatures and precipitation amounts are simulated better than in coarser-resolution versions of the same model.
"That's all Folks!"

Cartoon Songs From

MERRIE MELODIES & LOONEY TUNES
AMIP annual precipitable water

- CAM minus NCEP
- CAM minus ECMWF
- CAM minus MODIS
50 km
300 km