Fine-resolution global time slice simulations

Philip B. Duffy^{1,2,3}

Collaborators: G. Bala¹, A. Mirin¹

¹Lawrence Livermore National Laboratory ²University of California, Merced ²University of California, Davis

NARRCAP Users' Meeting, February 14, 2008

THIS TALK APPROVED FOR

Why include global-domain simulations in NARCCAP?

- Nice to have global-domain results
- Interesting to compare global time-slice results to nested model results

Advantages/disadvantages vs. nested model approach

Advantages:

- Nice to have global-domain results.
- Needed input data (SST + sea ice extents) are minimal, and universally available.
- Results are not subject to degradation by biases in lateral boundary conditions.

Disadvantages:

- Regional-scale results are not constrained by lateral boundary conditions.
- More demanding of CPU.
- Larger volume of output data.

What model did I use?

- Fine-resolution version of NCAR CAM3.1 global atmospheric model
- Finite Volume dynamical core
- 0.625 deg. (longitude) x 0.5 deg. (latitude) grid spacing
- Ad hoc retuning of parameterizations performed in collaboration with Hack et al. of NCAR

I performed two simulations

- 1. "Control" or "AMIP" simulation
 - 1. Covers 1979-2000
 - 2. driven by observed SSTs and sea ice extents
- 2. "Future" or "A2" simulation
 - 1. Covers 2041-2060
 - 2. Driven by

SST = SST_{obs} + SST_{ccsm}^{future} - SST_{ccsm}^{present}. SST_{ccsm} from simulation of A2 emissions scenario performed with coarse-resolution version of CCSM

3. This method of deriving SSTs provides first-order correction of biases in SSTs of CCSM model

What output did I save?

- 1. All quantities specified in NARCCAP protocol
- 2. Additional monthly-mean stuff
- 3. 3-hourly 3-d atmospheric fields needed to drive a nested atmospheric model. (This is 80% of the data volume).
- Raw data volume: 40 Tbyte
- After interpolation to specified pressure levels: 65 Tbyte.

Annual Mean Precipitation

Status of simulations, etc.

- 1. Simulations are complete.
- 2. Interpolation to specified atmospheric pressure levels is complete.
- Conversion to CF-compliant format is not complete (although results are already in netcdf format)
- AMIP results reside in NERSC archival storage
 A2 results reside in NCAR mass storage
 It's difficult to do anything with this much data!

AMIP simulation resembles planet earth

Reference height temperature over land

AMIP Precipitation...

CAM vs: GPCP

Legates & Wilmott

AMIP annual reference height temperature

AMIP annual reference height temperature

Reference height temperature biases

Biases in JJA temperatures are inherited from NCAR coarse-resolution model version

Errors in JJA short-wave cloud forcing

Errors in JJA T_{REFHT}

Anomalies in daily maximum near-surface temperatures

Anomalies in daily minimum near-surface temperatures

AMIP seasonal precipitation biases

Daily precipitation amounts

Summary: LLNL time-slice simulations

 Next time I'll be smarter about the difficulties of handling 60+ Tbyte of output.

Results look like planet earth, but...

• ... Near-surface temperatures have large biases in some regions, especially in summer.

• These seem to be related to cloud errors and are inherited from the coarse-resolution model version.

 Daily temperatures and precipitation amounts are simulated better than in coarser-resolution versions of the same model.

AMIP annual precipitable water

d26 amip - NCEP

-12

50 km

300 km