IPCC overview: reliability of regional projections

Richard Jones Met Office Hadley Centre

IPCC regional predictions

- Significant temperature changes are very likely and patterns of change are becoming clear
- Many statements are made relative to the global average warming which is still uncertain
- Patterns of precipitation change are becoming clear for many areas but little confidence in the magnitude of the changes
- Level of confidence/uncertainty is regionally dependent – key regions have high uncertainty
- Information on extremes and local changes is very patchy

IPCC AR4 summary seasonal precipitation change figure

- Model consensus implies a level of reliability
 - but need mechanisms as well
- Lack of consensus implies no information
 - but assessed at grid-scale thus maybe misleading
- No information on fine temporal or spatial scales

Response of All India rainfall (A1B, 2080s)

Lack of consensus from model patterns

How relevant is this if monsoon processes are captured in the models?

-20-1010 20 30 40 50 60

-20-1010 20 30 40 50 60

Winter temperature change summary

DJF Surf Temp (degC), COMPOSITE

Summer temperature change summary

JJA Surf Temp (degC), COMPOSITE

NARCCAP models in an IPCC context

Summer temperature change: NARCCAP models

CCCMA

140°W

160°W

120°W

100°W

BO⁰₩

60°W

180°

GFDL

Winter precipitation change summary

DJF Precip (mm/day), COMPOSITE

Summer precipitation change summary

JJA Precip (mm/day), COMPOSITE

Precipitation validation - CCCMA

DJF Precip (mm/day), CGCM3.1.T47

JJA Precip (mm/day), CGCM3.1.T47

Precipitation validation - CCSM

DJF Precip (mm/day), CCSM3

JJA Precip (mm/day), CCSM3

Precipitation validation - GFDL

DJF Precip (mm/day), GFDL-CM2.1

JJA Precip (mm/day), GFDL-CM2.1

Precipitation validation – HadCM3

DJF Precip (mm/day), UKMO-HadCM3

JA Precip (mm/day), UKMO-HadCM3

CCM3 winter responses (1961-90) (2041-70) - (1961-90)

CCM3 summer responses (1961-90) (2041-70) - (1961-90)

ACSME

ACTACSME

(1961-90) CGCM3-CRU2

2m T

Precip.

CCCMA summer responses (1961-90) CGCM3 - CRU2

CCSM response summary: 2050s – 1980s Temperature and precipitation

HadCM3 temperature : model, obs, bias

degree K

degree K

degree K

HadCM3 precipitation: model, obs, bias

GFDL model response (low/high resolution) winter and summer surface air temperature

GFDL model response (low/high resolution) winter and summer precipitation

