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Abstract:

An appropriate, rapid and effective response to extreme precipitation and any potential flood disaster is essential. Providing an
accurate estimate of future changes to such extreme events due to climate change are crucial for responsible decision making in
flood risk management given the predictive uncertainties. The objective of this article is to provide a comparison of dynamically
downscaled climate models simulations from multiple model including 12 different combinations of General Circulation Model
(GCM)–regional climate model (RCM), which offers an abundance of additional data sets. The three major aspects of this study
include the bias correction of RCM scenarios, the application of a newly developed performance metric and the extreme value
analysis of future precipitation. The dynamically downscaled data sets reveal a positive overall bias that is removed through
quantile mapping bias correction method. The added value index was calculated to evaluate the models’ simulations. Results
from this metric reveal that not all of the RCMs outperform their host GCMs in terms of correlation skill. Extreme value theory
was applied to both historic, 1980–1998, and future, 2038–2069, daily data sets to provide estimates of changes to 2- and 25-year
return level precipitation events. The generalized Pareto distribution was used for this purpose. The Willamette River basin was
selected as the study region for analysis because of its topographical variability and tendency for significant precipitation. The
extreme value analysis results showed significant differences between model runs for both historical and future periods with
considerable spatial variability in precipitation extremes. Copyright © 2012 John Wiley & Sons, Ltd.
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INTRODUCTION

Among the potentially significant impacts of future climate
change, the spatial and temporal variation of precipitation
extremes, in terms of intensity and frequency, is of
paramount importance to water resources engineers and
decision makers. The primary approach for evaluating
potential changes to hydroclimatic variables is through the
use of climate models that simulate aspects of the global
climate cycle. During the last three decades, the number and
complexity of climate models have increased substantially,
more physical processes are simulated and the coupling
between individual sea, atmosphere and land-based
processes has been improved (Xue et al., 2001; Wang
et al., 2004; Diffenbaugh et al., 2005; Mearns, 2007;
Solomon, 2007; Mearns et al., 2011; Yuan and Liang,
2011). Recent advancements in modelling spatial and
temporal climate variables at finer scales allow for regional
impact analysis studies. The ability to investigate the impact
of climatic change at a regional scale has the potential to
inform water resource managers and decision makers
regarding the changes in the climate cycle that will influence
extreme events, that is, floods and droughts. To provide
valuable information regarding potential climatic changes,
the results from multiple climate model simulations can be
orrespondence to: Hamid Moradkhani, Department of Civil and
ironmental Engineering, Portland State University, Portland, OR, USA.
ail: hamidm@cecs.pdx.edu

pyright © 2012 John Wiley & Sons, Ltd.
investigated and compared with reduce the overreliance on
one model and quantify model uncertainty.
During the last two decades, numerous improvements in

the field of climate change research have bolstered
confidence in the predictive capability of climate models.
Through increased international research efforts made
possible by initiatives such as multimodel ensemble
investigation projects (described in greater detail in the
section on Multimodel Ensemble Projections), climate
models have undergone extensive analysis by an increasing
number of investigators at virtually all levels of research
(Solomon, 2007). All major component phases (atmospheric,
oceanic and terrestrial) have seen improvement in terms of
model formulation (improved transport and dynamics
schemes), increased resolution (vertical, horizontal and
temporal) and represented processes (such as direct and
indirect aerosol effects) as well as many other aspects
(Solomon, 2007). Most notably for this study, the overall
distribution of precipitation and the capability of models to
simulate extreme events are noted by the Intergovernmental
Panel on Climate Change-Fourth Assessment Report (IPCC-
AR4) as areas, which have seen improvement.
Within the climate modelling community, it has long

been speculated that increasing the resolution of climate
models is necessary to improve the estimates of regional-
scale phenomena, such as precipitation (e.g. Giorgi, 1990;
McGregor, 1997; Murphy, 1999; Caldwell, 2010; Di
Luca et al., 2011;). The process of downscaling outputs
from GCMs has been established as the primary approach
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for addressing the inadequacies of large-scale resolution
models. There are two main classes of downscaling
procedures: statistical and dynamical. Numerous studies
during the last several decades have provided detailed
comparisons and exploration of both downscaling types
(e.g. Giorgi, 1990; McGregor, 1997; Murphy, 1999;
Caldwell, 2010; Di Luca et al., 2011; Najafi et al., 2011a).
Statistical approaches involve determining reliable statis-
tical relationships between large-scale climate variables that
are well represented by GCMs, such as pressure fields, and
local-scale variables, such as temperature or precipitation
(Najafi et al., 2011a; Najafi et al., 2011c). There is currently
an extensive variety of statistically based approaches (for
a more comprehensive review, see Fowler et al., 2007;
Salathe et al., 2007). Dynamic downscaling approaches, on
the other hand, are based on the same numerical integration
of differential equations, as in GCMs, but over a smaller
spatial and temporal domain. Furthermore, dynamical
downscaling approaches can include modified physical
schemes that have been demonstrated to better address
topographical variations (Yuan and Liang, 2011). Given
recent advancements in computational efficiency and
resources, dynamic downscaling, via regional climate
models (RCMs), has expanded to the point where numerous
RCMs exist and the need for multimodel comparison is
beginning to be addressed (Mitchell, 2009; Van der Linden
and Mearns et al., 2009; Kendon et al., 2010).
Caldwell (2010) found that RCMs tend to overpredict

precipitation estimates and that, contrary to expectations,
‘improved resolution does not translate into improved
simulation. . ..’ For that study, the author investigated the
performance of gridded observational data sets, RCMs
and GCMs ranging in spatial resolution from 1/12th of a
degree up to 4.5 F in terms of their ability to reproduce
wintertime precipitation over the state of California. It
was noted that the removal of bias from the climate
models was critical.
Di Luca et al. (2011) showed that temporal scale is one

aspect where RCMs do provide noticeable improvements
compared with coarser resolution models. The central
concern of that studywas to identify amanner of objectively
quantifying the amount of information gained from RCM
efforts. As pointed out by the authors, although RCM
simulations may not add substantive value across all
aspects of climate change predictions, identifying areas
where they do add significant information should be an area
of greater concern and research. Instead of concentrating on
whether RCMs improve desirable climate-related informa-
tion at all spatial and temporal scales, it would be more
beneficial for resources to be focused on identifying those
aspects that are improved via RCM simulation, thereby
resulting in more skilful impact and adaptation investiga-
tions. Results of that study reveal several aspects where the
added value of RCMs is noticeable, including shorter
temporal scale and warmer seasons and in regions of
complex topology (Di Luca et al., 2011).
With the previouslymentioned findings, the development

of a performance metric that describes the ability of RCMs
to improve upon GCM simulations is a current field of
Copyright © 2012 John Wiley & Sons, Ltd.
research for those investigating regional climatology and the
impact of climate variation. Kanamitsu and DeHaan (2011)
provided a concise discussion of the merits and short-
comings of commonly used performance metrics concern-
ing climate model simulations. The authors pointed out
that deficiencies exist in several aspects of currently used
performance metrics and propose a novel measure
intended to accurately capture the geographic distribution
of a model’s skill, thereby yielding a quantitative and
descriptive measure of the ability of high resolution
models to add information in particular regions.
Model bias exists within climate models for multiple

reasons. Commonly identified causes of bias are attributed
to model structure and initial/forcing condition treatment.
To more accurately compare historic and future climate
model simulations, recent studies suggest the use of bias
correction techniques such as the quantile mapping
approach (e.g. Fowler et al., 2007; Mote and Salathe,
2010; Shrestha et al., 2011). The need for bias correction of
climate model simulations over future periods is widely
accepted for hydrologic impact studies (Wood et al., 2004);
however, the relative strengths and weaknesses of each
individual correction technique are still a focus of research
(Johnson and Sharma, 2011; Najafi et al., 2011b).
Because of the climate change impact on hydroclimatic

events, the study of the ability of climate models to
capture and simulate extreme precipitation events is of
paramount importance. Frei et al. (2006) and Villarini
et al. (2011) studied the variability in both observed and
climate model simulated extreme event occurrence. The
potential for change in the occurrence of extreme events
in the future in conjunction with projected climate
variability is also prevalent in recent studies (Mote and
Salathe, 2010; Tryhorn and DeGaetano, 2011). To
evaluate the characteristics of extreme events, statistical
extreme value theory (EVT) is commonly used in water
resource and hydrology-related studies in recent decades
(Katz et al., 2002). EVT is a statistical method used for
analyzing the tails of probability distributions of a random
variable. The parameters of the extreme value distribu-
tions yield estimates of the intensity and frequency of
extreme events. As such, the distributions can be used for
estimating the magnitude of extreme event return values
in the future and historical periods to investigate the climate
change impact on hydroclimate extremes (Katz, 2010). EVT
has been widely applied in studies of precipitation (Katz
et al., 2002; Rusticucci and Tencer, 2008 Acero et al., 2010;
Wehner et al., 2010 Kharin et al., 2010a; Kharin et al.,
2010b;), temperature (Kharin et al., 2010b;), streamflow
(Katz et al., 2002; Hurkmans et al., 2010; Lima and Lall,
2010) and wind speed (Hundecha et al., 2008 Brabson and
Palutikof, 2010; Caires and Sterl, 2010; ), among others.
This article is organized as follows: a brief introduction

illustrating the relevance and growth of regionally based
climate model ensemble projects is provided in the
section on Multimodel Ensemble Projections. The
sections on Study Area and Data introduce the chosen
study area as well as the data sets used, respectively. The
section on Methodology provides a more detailed
Hydrol. Process. (2012)
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description of the methods used in this study. The results of
the analysis are presented and discussed in the Results
section, followed by conclusions in the Conclusions section.
MULTIMODEL ENSEMBLE PROJECTIONS

Because of the expansion of climate modelling efforts
resulting in an abundance of distinct climate models, there
is a need to evaluate how these models perform relative to
one another. Multiple model intercomparison projects
have been organized to meet this need. On a global scale,
the Coupled Model Intercomparison Project (CMIP) and
Atmospheric Model Intercomparison Project are the most
notable collaborations undertaken with this goal in mind
(Meehl et al., 2005 Meehl et al., 2007; Kreienkamp et al.,
2011;). Beginning in the mid-1990s, the World Climate
Research Programme (WCRP) committee, now known as
the WCRP/Climate Variability and Predictability Working
Group on Coupled Models, set about to organize one of the
first generations of intercomparison projects (Meehl et al.,
2007). Their efforts have since resulted in multiple CMIP
generations, recently culminating in an open-access data set,
theWCRPCMIP3multimodel data set which represents ‘an
unprecedented, comprehensive coordinated set of global
couple climate model experiments’ (Meehl et al., 2007).
Several regional programs have been conducted in the

last decade focused on addressing the need for appropriate
scale level assessment of climate change impacts. In
Europe, the Prediction of Regional Scenarios and
Uncertainties for Defining European Climate Change
Risks and Effects project described by Christensen and
Christensen (2007) followed by the Ensembles-Based
Predictions of Climate Changes and Their Impacts project
(Van der Linden and Mitchell, 2009) provided an array
of regional data sets for investigating future climate
Mainstem
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Copyright © 2012 John Wiley & Sons, Ltd.
variation. The Statistical and Regional Dynamical Down-
scaling of Extremes for European regions project focused
on the frequency and intensity of twenty-first century
extreme events over Europe (http://www.cru.uea.ac.uk/
projects/stardex/).
In North America, the North American Regional

Climate Change Assessment Program (NARCCAP)
provides data from multiple GCM–RCM-coupled simu-
lations over most the continent (Mearns et al., 2009).
The RCM data used in this study was provided by
NARCCAP efforts. NARCCAP’s goal is the production
of climate simulations at a resolution that allows for
regional-scale investigation of future climate variation.
The products are intended to be useful in generating and
studying impact scenarios across much of North
America. The program consists of multiple RCMs
driven by multiple AOGCMs. Simulations of both
future (2041–2070) and historic (1971–2004) periods
were produced by the NARCCAP modellers at a spatial
resolution of 50 km and subdaily temporal resolution.
Future scenarios were forced for the 21st century using
the Special Report on Emissions Scenarios (SRES) A2
emissions scenario.
STUDY AREA

Oregon’s Willamette River basin (WRB) (see Figure 1)
covers a drainage area of 29,728 km2 (11,478 sq mi),
roughly 12% of the entire state, and intersects or contains 13
of the 36 counties in the state (Hulse et al., 2002). It is home
for more than two thirds of Oregon’s population and serves
urban, agricultural, wildlife and recreational land use
interests (Hulse et al., 2002 Chang and Jung, 2010;). The
Willamette River, 13th largest in the continental USA,
capturesmore runoff than its higher ranked counterparts, per
0 160 320 48080
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unit of land area (Hulse et al., 2002; Chang and Jung, 2010;
Jung et al., 2011a).
The temperate marine climate of the basin translates

into cool wet winters, with 80% of annual precipitation
occurring between October and May, and warmer mostly
dry summers (Lee and Risley, 2002). The average annual
temperatures in the region depend primarily on elevation
and range from 40 �F to 65 �F. The annual mean
precipitation also varies with elevation, from approxi-
mately 40 inches at the lowest elevations up to 175 inches
at the highest elevations. Precipitation in the form of snow
at the higher elevations within the basin is an influential
component of the overall water cycle. Recent studies
estimate that as much as 75% of precipitation falls as
snow at or higher than 6500 ft (Chang and Jung, 2010).
Higher than 4000 ft, 35% of precipitation falls as snow
(Lee and Risley, 2002).
The WRB has been the subject of multiple recent

climate change and precipitation-related studies (e.g.
Chang and Jung, 2010; Moradkhani et al., 2010;
Risley et al., 2011 Jung et al., 2011a; Najafi et al.,
2011a,c;). Moradkhani et al. (2010) used a combination
of LiDAR and GCM data to investigate the potential
changes to floodplains and flood magnitude in the
Tualatin River Basin, a subbasin of the WRB.
Najafi et al. (2011a) used a multimodel approach to
investigate the influence of a variety of statistically
downscaled GCM outputs and hydrologic models also
over the Tualatin River Basin. Najafi et al. (2011c)
investigated the statistically downscaled GCM data
sets over the upper WRB with a focus on estimating
precipitation based on optimal predictor variables
selected using an independent component analysis
developed by Moradkhani and Meier (2010). Chang
and Jung (2010) investigated spatial and temporal
changes in runoff over the WRB using multiple GCMs,
emission scenarios and a hydrologic model. In contrast
to the previously mentioned studies, the current study
investigates the entire WRB using dynamically down-
scaled climate model data sets with a focus on the
ability of the RCMs to accurately simulate historic
precipitation events.
Table I. RCM

Model Aliases Modelling group

CRCM MRCC OURANOS/UQAM Canadian
Climate

ECP2 ECPC, RSM UC San Diego/Scripps Experim
Predictio
Spectral

HRM3 PRECIS,HadRM3 Hadley Centre Hadley R
MM5I MM5, MM5P Iowa State University MM5-PS

for Atmo
mesosca

RCM3 RegCM3 UC Santa Cruz Regiona
version 3

WRFG WRFP, WRF Pacific Northwest
National Lab

Weather
Forecast

Copyright © 2012 John Wiley & Sons, Ltd.
Given the projected population growth and influence of
precipitation on the WRB, understanding the effect of
future climate variability on the region is of crucial
importance for all stakeholders in the region. Exploratory
analysis of climate models yields one approach for
addressing this issue.
DATA

The NARCCAP project provides dynamically downscaled
GCM outputs at a spatial resolution averaging 50 km. Data
from six RCM simulations were available at the time of this
study; these RCMs are listed in Table I. The RCMs were
driven by boundary condition data sets provided by the
AOGCMs. Four distinct AOGCMs were selected by
NARCCAP to provide boundary conditions required as
inputs to the RCMs. These AOGCMs are listed in Table II
along with the group name, aliases and other distinct
information regarding the model differences. The NARC-
CAP Web site catalogued the individual ensemble member
data sets used to drive the RCMs for all AOGCMs, historic
and future simulations, except for the Hadley Centre
Coupled Model, version 3 (HADCM3) model.
Precipitation rate data [kgm-2 s-1], at a temporal

resolution of 3 h, was obtained over both a historical period
(1979–2004 for the NCEP reanalysis driven data and
1976–2000 for the GCM driven data) as well as a future
period (2038–2069). The spatial location of each RCM’s
grid points within the WRB is displayed in Figure 2. The
number and location of grid points within theWRB varies
between RCMs, owing to inherent design differences of
each model. Although the amount of RCM grid points
within the study region is rather sparse, it still represents
an improvement upon the spatial resolution of GCMs.
To provide a comparisonwith observed precipitation over

the WRB, the University ofWashington (UW) gridded data
set described byMaurer et al. (2002) was used. This data set
covers the period 1950–2000 and provides surface level
information regarding numerous climatic variables at three
hourly time intervals. Specifically for this study, the UW
data set provides values of total daily precipitation over the
information

Full name References

Regional
Model

http://www.ouranos.ca/fr/programmation-
scientifique/science-du-climat/simulations-
climatiques/MRCC/eng/crcm.html#crcm42

ental Climate
n Center Regional
Model

http://www.emc.ncep.noaa.gov/mmb/RSM/

egional Model 3 http://www.metoffice.gov.uk/precis/
U/National Center
spheric Research
le model

http://www.mmm.ucar.edu/mm5/

l Climate Model http://users.ictp.it/~pubregcm/RegCM3/

Research and
ing Model

http://www.wrf-model.org/index.php
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Table II. General circulation model (drivers for RCMs) information

Model Full name Modelling group Ensemble member used More information (references)

CCSM Community Climate
System Model

National Center for
Atmospheric Research

b30.030e (ctl), b30.042e (fut) http://www.cesm.ucar.edu/

CGCM3 Third Generation
Coupled Global
Climate Model

Canadian Centre
for Climate Modeling
and Analysis

CGCM #4 http://www.ec.gc.ca/ccmac-
cccma/default.asp?lang=En&
n=1299529F-1

GFDL Geophysical
Fluid Dynamics
Laboratory GCM

GFDL/National
Oceanic and Atmospheric
Administration

20C3M, run2; sresa2, run1

HADCM3 Hadley Centre
Coupled Model,
version 3

Hadley Centre for Climate
Prediction and Research,
Met Office, UK

Custom NARCCAP run Gordon et al. (2000),
Pope et al. (2000)
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Figure 2. Location of RCM grid points within the study area Figure 3. Example scenario depicting observed and simulated data CDFs
over the historic period 1980–1998
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continental USA obtained from the stations of the National
Oceanic and Atmospheric Administration’s Cooperative
Observer (Maurer et al., 2002). The precipitation data over
the WRB used in this study was obtained at 1/8th degree
resolution and served as an observational benchmark upon
which the dynamically downscaled NARCCAP data sets
were compared.
METHODOLOGY

Bias correction

For this study, the quantile mapping approach was
implemented on the NARCCAP data sets. In this
procedure, the observed and simulated data sets are each
characterized in terms of their full distribution of daily
values for each month, a so-called nonparametric
approach (Johnson and Sharma, 2011) because it does
not rely on adjusting the mean, standard deviation or other
standard statistical parameters. As in most bias correction
approaches, a scaling factor is developed between the
observed and the simulated data sets over a historic
period. For both the observed and the simulated data sets,
the cumulative distribution functions (CDFs) are com-
puted on a monthly basis. Figure 3 shows the CDFs for an
Copyright © 2012 John Wiley & Sons, Ltd.
example case. After computing the CDFs, the scaling
factor determined based on the respective quantile values
during the observed period are then applied for the
projected (future) period. The results, which will be
discussed in the Results section, demonstrated that this
approach is suitable for the given data set and suggest that
such a bias correction step would be crucial when using
the given data for impact analysis.

Performance of the GCMs versus RCMs

To evaluate the performance of RCM simulations,
various performance metrics have been proposed in recent
studies. In this study, the performance metrics focus on
the ability of the model simulations to accurately capture
the occurrence of precipitation events over the study area.
This study used a newly developed performance metric
focusing on the ability of RCMs to accurately simulate
precipitation events. The added value index (AVI) is
defined as ‘the area beyond critical useful skill where the
regional model skill is greater than that of the coarse-
resolution model’ (Kanamitsu and DeHaan, 2011). In fact
AVI was designed to identify the ability of an RCM to
improve on the simulated characteristics compared with
its host GCM simulation.
Hydrol. Process. (2012)
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Figure 4. Calculation of the AVI. Two idealized skill distribution
functions are shown, the GCM skill in dash line and the RCM skill in
solid line. The XP is defined as the skill where the two distributions
intersect. The Threshold Skill Value is defined as a user selected value
below which the skill is not considered. The mean skill of each model
(GCM or RCM) is defined as the skill value at peak of the distribution
curve. The AVI is then calculated as the area between the distributions
above the XP skill value, demonstrated by the hatched area in the figure

A. HALMSTAD, M. R. NAJAFI AND H. MORADKHANI
Computing the AVI begins by calculating the skill of
the simulations compared with an observed data set. For
this study, the skill metric computed is based on correlation
values between observations and simulations at each grid
point. We used Spearman’s correlation coefficient (r). The
observed (x) and simulated values (y), from the UW data set
and each RCM–GCM pair, respectively, were ranked (i),
and the correlation coefficient was computed for eachmonth
as follows:

r ¼
P
i

xi � �xð Þ yi � �yð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

xi � �xð Þ2P
i

yi � �yð Þ2
r (1)

The seasonal correlation values were considered as the
combination of the monthly correlation values for that
season at each grid point and for each model. This was
performed for both the RCM–GCM as well as the original
GCM forcing data set. The seasonal correlation values at
all grid points were then fit to a normal distribution
through the transformation:
The seasonal correlation values were then averaged at

each grid point and for each model. This was performed for
both the RCM–GCM as well as the original GCM forcing
data set. The correlation values at each grid point were then
fit to a normal distribution by the transformation:

P� ¼ P

1� ABS Pð Þnð Þ (2)

where Ρ is the original averaged correlation value at each
grid point, P* is the transformed value and n is set to a value
of 8 as suggested by (Kanamitsu and DeHaan, 2011). From
these normalized correlation values, a probability density
function (PDF) was established. In some simulations, the
two PDFs would cross one another, the skill values at these
cross points (XPs) provides useful information regarding the
data sets. To aid understanding those PDF characteristics
used in describing this metric, Figure 4 was generated
containing two PDFs, and they illustrate the location of
model means, XP and the region considered in calculating
the AVI.
Rather than focusing on the entire skill distribution, it

is useful to select a threshold skill above which the
distributions will be investigated. This is important
because investigating model simulation should focus
on skill values that represent accurate portrayal of
observed characteristics. For this study, the threshold
skill value of 0.3 was selected. When computing
the value of the AVI for each model combination, only
the area between the PDFs above this threshold will be
considered and computed. Furthermore, to investigate
and portray situations where the RCM outperforms
the GCM at critical high skill values, the skill values
where the distributions cross one another are calculated.
When the distributions cross one another above the
previously mentioned threshold value, that location is
termed the XP skill. Results of the AVI analysis on the
Copyright © 2012 John Wiley & Sons, Ltd.
NARCCAP simulation data sets is presented in the
Results section.

Extreme value analysis

Given a sufficiently large number of maximum observa-
tions in finite sized blocks, such as annual maximum, EVT
leads to the generalized extreme value (GEV) distribution
(Fisher and Tippett, 1928):

F Dijt≤d
� � ¼ exp � 1þ xij

D� mij
sij

� ��1=xij
" #

(3)

where m is termed the location parameter, s is the scale
parameter and x is the shape parameter (Kharin and Zwiers,
2000 Katz et al., 2002; ). i, j and t denote the latitude,
longitude of each grid and the time, respectively. D
represents independently and identically distributed (iid)
data D1, D2,. . ., Dn.
The GEV distribution commonly considers the max-

imum extreme in annual blocks (Cooley, 2009; Mínguez
et al., 2010; Towler et al., 2010); therefore, it may
provide an insufficient data series especially for short
periods. It also disregards extreme data less than the
annual maximum in each year (Cooley et al., 2007).
Instead, in the peaks-over-threshold approach, one
considers all the extreme values, which exceed a large
enough threshold (Naveau et al., 2005 Cooley et al.,
2007; Acero et al., 2010;).
The generalized Pareto distribution (GPD), from the

EVT, models the probability distribution of exceedances
over the threshold u (Coles, 2001). Similar to GEV, this
Hydrol. Process. (2012)
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method is based on asymptotic justification (i.e. suffi-
ciently large data set). In this case, the tail of the
distribution is represented by

F Dijt > d þ u Dijt > u
�� � ¼ 1þ xij

d

suij

� ��1=xij

þ

 
(4)

Assuming a ¼ 1þ xij d
suij

� 	
, then a+ = a if a≥ 0 and

a+ = 0 if a< 0. su(>0) and x are the scale and shape
parameters, respectively. The scale parameter provides
information about the variability of the exceedances, and
x gives information about the tail of the distribution as
discussed previously. The threshold u is chosen so that the
previously mentioned data follow a GPD.
By differentiating the CDF of Equation 4, the following

probability distribution is obtained:

p Dijt

� � ¼ 1
suij

1þ xijd
suij

� ��1=xij�1

(5)

To remove the conditional form of the GPD, the
following equation can be used instead based on the
theory of total probability (Coles, 2001):

F Dijt > d þ u
� � ¼ zuij 1þ xij

d

suij

� ��1=xij

zuij ¼ F Dijt > u
� �

(6)

The EVT approach provides estimates of various return
levels. The r-year return level (dr) is obtained from the
GPD parameters:

drij ¼ uþ suij
xij

rnyijzuij
� 	xij � 1


 �
(7)

where ny is the number of observation in a year.
Optimal threshold selection is an important factor in

GPD approach. A high value of u results in very few
exceedance points and high variance in the parameter
estimates; however, a very low u violates the asymptotic
assumption of the EVT approach. In this study, data were
fit to the GPD distribution several times with different
thresholds. The estimated GPD parameters were then
evaluated to find a stable range of parameter values
(Thompson et al., 2009). Considering various RCMs and
grid points the 95% quantile of the data provided reliable
parameter estimates. Therefore, u=Q95 was selected as
the GPD threshold.
The independency assumption is another factor that

may invalidate the EVT approach because the occurrence
of precipitation extreme in one day may influence the
probability for the one in the next day. According to ‘runs
declustering’, scheme exceedances belong to the same
cluster if they are separated by a fixed number of
observations r (Acero et al., 2010). In this study, r= 1 was
Copyright © 2012 John Wiley & Sons, Ltd.
chosen, meaning that if the distance between two extreme
events was over a day then those extremes were
considered as belonging to different clusters.
The final independent, declustered extreme NARCCAP

precipitation data were fit to the GPD distribution for each
grid cell. The maximum likelihood approach was then
used to estimate the distribution parameters.
RESULTS

The results from the performance metric analysis are
displayed in Figure 5 and in Table III. Figure 5 displays
the PDFs of each RCM–GCM pair in terms of their
correlation skill values. It is evident from Figure 5 that not
all of the RCMs outperform their host GCMs in terms of
correlation skill. In fact, the Community Climate System
Model (CCSM) GCM outperforms all three of the RCMs
(CRCM, MM5I and WRFG); it is coupled with in terms
of both mean/average skill as well as the overall
distribution of skill. Figure 5, row 1 column 2 (CRCM-
CCSM), exhibits the scenario where the average skill of
the GCM is greater than the skill of the RCM and the
GCM outperforms the RCM even at high skill levels. In
this case, the RCM can be viewed as having no added
information compared with the host GCM. In Figure 5,
however, the Experimental Climate Prediction-2(ECP2)–
Geophysical Fluid Dynamics Laboratory (GFDL) com-
bination reveals the opposite and most desirable situation.
In this case, the average skill of the RCM is greater than
that of the GCM, and the high correlation simulations are
better represented in the RCM. RCM3–Third Generation
Coupled Global Climate Model (CGCM3) shows the
situation where both the RCM and GCM appear to perform
with equal skill. Table III yields the relevant skill values as
well as the computed AVI for all simulations except for the
Hadley Regional Model 3 (HRM3)–HADCM3 combination
[data for the host GCM (HADCM3) was not available at
daily resolution so themetricswere not computed]. Themean
skill of both RCM and GCM individually reveals that the
overall skill of these simulations compared with observed
data was low, with the highest mean skill being approxi-
mately 0.05. As mentioned earlier, in some cases, the
distributions crossed one another over the threshold skill level
of 0.3. The value of the AVI is given in the last column of
Table III. Positive values indicate that the RCM improved
upon the host GCM, and negative values indicate that the
GCM simulation had higher correlation with observed data.
AVI values with an ‘x’ indicate that the RCM outperformed
the GCM above the XP skill value, meaning that the RCM
demonstrated higher skill at high correlations.
Results from the EV analysis are displayed in

Figures 6–8. The return level analysis in Figures 6 and 7
reveal noticeable differences between both RCM simula-
tions as well as GCM boundary condition influence.
Figure 6 displays the spatial distribution of the 2-year
return level magnitudes over the WRB as simulated by
each of the RCM–GCM data sets modelled via represen-
tative GPD distributions. The 2-year return level
magnitudes vary substantially between the RCMs, with
Hydrol. Process. (2012)



Figure 5. PDFs for all RCM and GCM combinations based on correlation between simulated and observed historic (1980–1998) precipitation data sets.
The correlation between the simulation and the observation is calculated for each month of a year, and then the average value is computed over the period

of analysis for each month. The PDFs are then generated for each season
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values ranging from less than 75mm/day to more than
135mm/day. The upper limit of the 25-year return level
magnitudes extends to values in excess of 150mm/day.
Some very clear differences between both RCMs and
GCMs are evident in these figures. It is notable that only
the HRM3–HADCM3 simulation data set contains magni-
tudesmore than 110mm/day for the 2-year return level.Most
Table III. Mean skill, XP skill, area difference between PDFs and
AVI computed from dynamically downscaled RCM data sets over

the WRB, historic period (1980–1998)

Model
(RCM–GCM)

RCM
mean skill

GCM
mean skill

XP skill AVI

WRFG–CGCM3 0.0351 0.0173 0.4740 �0.0032
WRFG–CCSM 0.0245 0.0353 0.5232 0.0140x
RCM3–GFDL �0.0013 0.0155 0.8916 �6.949e.05
RCM3–CGCM3 0.0314 0.0173 0.2746 �0.0088
MM5I–CCSM 0.0305 0.0353 0.5148 0.0123x
ECP2–GFDL 0.0050 0.0155 No XP 0.0505
CRCM–CGCM3 0.0448 0.0173 0.4455 �0.0088
CRCM–CCSM 0.0163 0.0353 No XP �0.0394

Copyright © 2012 John Wiley & Sons, Ltd.
future simulations do not reveal a substantial increase in the
magnitude of the 2-year return level. The 25-year return
levels also do not change dramatically between the historic
and the future periods. As with the 2-year return level
estimates, the HRM3–HADCM3 simulations exhibit the
highest magnitudes; however, other model combinations,
such as WRFG–CGCM3&CCSM and RCM3–GFDL, also
exhibit high magnitudes. The spatial distribution of these
magnitudes is also informative. The topography of theWRB,
high elevations on the Eastern and Western edges and low
valley floor in between, should influence the distribution of
precipitation, theoretically with more precipitation falling at
higher elevations. However, in most of the model simula-
tions, the topographical influence is not discernible.
The shape parameter of the estimated GPD is displayed

in Figure 8 across the WRB. In terms of the simulated
precipitation events over the WRB, a positive shape
parameter indicates the presence of a heavy upper tail
(higher likelihood of extreme magnitude events) and a
negative shape parameter indicates a bounded distribu-
tion (an identifiable upper limit to those extreme events),
and when the shape parameter is equal to zero, the
Hydrol. Process. (2012)
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Figure 6. Simulated historic (1980–1998) and future (2040–2069) 2-year return levels for all RCMs
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Figure 7. Simulated historic (1980–1998) and future (2040–2069) 25-year return level magnitudes for all RCMs

PRECIPITATION EXTREMES OVER THE WILLAMETTE RIVER BASIN
distribution is unbounded but has a thin upper tail.
However, when the distribution is wider, or unbounded,
the uncertainty in the distribution increases. Areas in
green represent regions where the shape parameter is
negative, yellow areas represent shape parameter values
that are positive but nearly zero and red and pink areas are
indicative of areas where the estimated distribution’s
Copyright © 2012 John Wiley & Sons, Ltd.
shape parameter is higher than 0.1. The shape parameter
results also reveal differences due to RCM characteristics
as well as the influence of GCM driving conditions on
the behaviour of the RCMs. From Figure 8, it is evident
that the GFDL (a GCM) simulations are represented
by unbounded heavy upper tails regardless of RCM
and period.
Hydrol. Process. (2012)
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Figure 8. Representative GPD distribution shape parameter (x) for historic (1980–1998) and future (2040–2069) RCM simulations

Figure 9. Results from bias correction procedure. Taking the values from the WRFG-CCSM simulation and the UW observation data sets for August and
January, then calculating mean monthly precipitation values (mm) from 1980 to 1998
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PRECIPITATION EXTREMES OVER THE WILLAMETTE RIVER BASIN
Results of the quantile mapping bias correction
technique are displayed in Figure 9, for the WRFG–
CCSM simulation. Mean monthly precipitation values
for January and August over the historical period,
1980–1998, are displayed over the WRB both before
and after the bias correction procedure was applied.
These two months were selected because they represent
both heavy precipitation, January, and relatively low
precipitation, August, months. The observed gridded
data set used to bias correct the simulated data is also
displayed for the selected months in Figure 9, row 1.
Rows 2 and 3 of Figure 9 display the simulated data
before and after, respectively, the application of the
bias correction procedure. Rows 4 and 5 of Figure 9
show the difference (simulated� observed) between the
data sets before and after bias correction. The bias is
stronger in the month of January because of the higher
magnitude of precipitation during the month, whereas
August, a relatively dry month over the WRB, reveals a
smaller magnitude in the bias. During the month of
January, the simulation tends to over predict precipita-
tion in the WRB. This positive bias is an attribute
that has been documented before in dynamically down-
scaled data sets (Caldwell, 2010). The bias present in the
simulation data set during the month of August is also
slightly positive, demonstrated by the range of bias values
present before bias correction. The bias correction proced-
ure effectively corrects for this positive bias and is able to
reduce the overall magnitude of bias as well.
CONCLUSIONS

In this study, precipitation data from the multiple RCMs
and GCMs were investigated over the WRB. Multiple
performance metrics, a bias correction scheme and
extreme value analysis were applied to the data. Results
of the various performance metrics and information from
the extreme value analysis were described, including the
AVI, 2- and 25-year return level magnitudes and the
shape parameter of a representative GPD distribution. The
results of this study demonstrate two key facts regarding
the use of dynamically downscaled climate data sets. First,
applying a bias correction scheme to any downscaled data
set is a needed and important step yielding more accurate
results. For the NARCCAP data sets, the quantile
mapping procedure was implemented and successfully
reduced the difference between observed and simulated
precipitation over the WRB by correcting for the positive
bias that is present in RCM data sets and reducing overall
bias magnitude. Second, implementing fundamentals of
EV theory to climate data sets provides estimates of changes
to variable values, such as precipitation, because of climate
change. Using the GPD distribution, this study obtained
estimates of changes to 2- and 25-year extreme precipitation
event magnitudes over the WRB. The results indicate that
these return level magnitudes will increase in the future
period 2038–2069 compared with simulations over the
historical period 1980–1998. In addition, the shape
Copyright © 2012 John Wiley & Sons, Ltd.
parameter of the GPD distribution derived from the
NARCCAP data sets indicates that the RCM models in
the NARCCAP study provide different depictions of future
changes over the WRB.
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