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Abstract This study aims to analyse the interannual

variability simulated by several regional climate models

(RCMs), and its potential for disguising the effect of sea-

sonal temperature increases due to greenhouse gases. In

order to accomplish this, we used an ensemble of regional

climate change projections over North America belonging

to the North American Regional Climate Change Program,

with an additional pair of 140-year continuous runs from

the Canadian RCM. We find that RCM-simulated inter-

annual variability shows important departures from

observed one in some cases, and also from the driving

models’ variability, while the expected climate change

signal coincides with estimations presented in previous

studies. The continuous runs from the Canadian RCM were

used to illustrate the effect of interannual variability in

trend estimation for horizons of a decade or more. As

expected, it can contribute to the existence of transitory

cooling trends over a few decades, embedded within the

expected long-term warming trends. A new index related to

signal-to-noise ratio was developed to evaluate the expec-

ted number of years it takes for the warming trend to

emerge from interannual variability. Our results suggest

that detection of the climate change signal is expected to

occur earlier in summer than in winter almost everywhere,

despite the fact that winter temperature generally has a

much stronger climate change signal. In particular, we find

that the province of Quebec and northwestern Mexico may

possibly feel climate change in winter earlier than else-

where in North America. Finally, we show that the spatial

and temporal scales of interest are fundamental for our

capacity of discriminating climate change from interannual

variability.

1 Introduction

Until recently, climate change research concentrated par-

ticularly on long-term changes despite user needs becom-

ing increasingly focused on shorter terms. The reason for

this dissonance between users and scientists was usually

stated in the following way: in the short term, climate

variability would preclude—or at least could be a serious

obstacle to—any attempt to anticipate climate behavior.

Over the past few years, however, things have changed.

Numerous research projects on decadal prediction are

currently underway (e.g., Keenlyside and Ba 2010). In

addition, and perhaps related with the fact that global

surface temperature has not increased markedly for almost

a decade, natural climate variability has received a

remarkable increase in attention, as one of the better-

understood mechanisms able to temporarily slow down or

revert the temperature increase associated to anthropogenic

greenhouse gas (GHG) emissions (see for example, East-

erling and Wehner 2009; Liebmann et al. 2010; Knight

et al. 2009; Santer et al. 2011; and the Web tool described

in Greene et al. 2011).

The emphasis on the part of scientists on long-term

average temperature increase has perhaps produced an

expectation of monotonous growth on the part of users and

governments. This expectation of monotonous growth can

be seen for example in reactions to short-term cooling

R. de Elı́a (&) � S. Biner � A. Frigon

Consortium Ouranos, 550, Sherbrooke Street West, 19th Floor,

West Tower, Montreal, QC H3A 1B9, Canada

e-mail: de_elia.ramon@ouranos.ca

R. de Elı́a
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(see for example, Investor’s Business Daily 2008; Lawson

2008; or Allegre et al. 2012 op-ed in The Wall Street

Journal which stated ‘‘Perhaps the most inconvenient fact

is the lack of global warming for well over 10 years

now.’’). Hawkins (2011) argues that Intergovernmental

Panel on Climate Change (IPCC) reports tend to underline

the ensemble average and spread of Global Climate Model

(GCM) projections—indicating a smooth increase in tem-

perature over the coming century, which has the drawback

of masking the role of natural climate variability. Due

either to the difficulties of communicating the concept of

natural climate variability to users or to the past tendency

of many climate scientists to disregard the coming decade

as ‘‘beyond our ability to predict’’, not much research has

been done until recently on what we should expect in the

short term, other than putting our hopes and resources in

decadal prediction.

We believe that studies of natural climate variability are

important for several reasons: among the non-scientific

ones, users and the public have to be informed in the

clearest terms that the projected increase in the mean

temperature (or change in any other variable) will not be a

smooth monotonous movement upwards [several publica-

tions have lately called for this point to be given particular

importance, among them (Santer et al. 2011)]. This will

clarify users’ expectations and avoid, first, inadequate

adaptation, and second, loss of faith in climate scientists

when a cooling trend actually occurs. Successive events

such as the extreme cold waves in Europe during the winter

of 2009–2010, as well as December 2010 and February

2012, were a clear reminder of this need (see for example,

the study of cold months in a warming climate in Räisänen

and Ylhäisi (2011); in addition, see Cohen et al. (2010),

who argue that the attribution of winter’s extreme harsh

conditions is critical to the debate of anthropogenic climate

change; see also Hawkins (2011) effort to reach a larger

audience on the importance to account for natural vari-

ability in the discussion about climate change; Deser et al.

(2012) call for a dialogue between scientists and policy

makers around this topic to avoid raising expectations for

accurate regional predictions).

With these issues in mind, and considering that North

America is one of the regions with the largest winter

temperature interannual variability in the world (see Szeto

2008), we analyzed Ouranos’ in-house database [consti-

tuted mainly of simulations from the Canadian Regional

Climate Model (CRCM)] along with data from North

American Regional Climate Change Assessment Program

(NARCCAP), and studied the effect of temperature inter-

annual variability in the regional climate change projec-

tions that we distribute to Ouranos’ users (mainly

government agencies). This study has some resemblances

to those trying to detect a climate change signal from

observations (e.g., Trenberth et al. 2007). Those studies

inquire whether a certain change in temperature can be said

to be significantly larger than that expected from natural

climate variability. In our case, we asked ourselves how

many recorded years should pass before a projected change

emerges from interannual variability. In our climate mod-

els, the only source of external change is the variation in

greenhouse gases and aerosols, and so attribution of

changes is not in question (for issues related to climate

change attribution see The International Ad Hoc Detection

and Attribution Group 2005).

A few other studies have had similar goals. Among the

earliest are Christensen et al. (2007) and Giorgi and Bi

(2009), who investigated the moment when the climate

change signal simulated by global models over regions of

semi-continental scale overcomes projection uncertainty;

the first study considered natural variability as noise, while

in the second, noise is viewed as the combination of both

model error and natural variability. They called this

moment the Time of Emergence (TOE) of the climate

change signal, a term that is entering common use. In our

study, we concentrate on interannual variability, leaving

aside model error and assuming a single GHG emissions

scenario. Deser et al. (2010) asked themselves a similar

question but instead of wondering about the number of

years needed to obtain a detectable signal, they concen-

trated on the number of ensemble members that are needed

for the signal to become statistically significant. Stott and

Tett (1998) also presented a study in which detectability of

expected temperature increases obtained from a global

model are analysed at different spatial scales. Santer et al.

(2011) studied the timescale dependence in the signal-to-

noise ratio from the lower tropospheric temperature trends

against natural variability in observed and modeled data-

sets. Mahlstein et al. (2011), in a similar study to Giorgi

and Bi (2009), concentrate on the location of the earliest

significant warming, arguing that such investigation is

useful not only for understanding how humans experience

climate change in different locations, but also because a

range of climate impacts can generally be expected as

climate changes exceed past variability. Hawkins and

Sutton (2012) pursue a similar objective with a slightly

different methodology, putting more emphasis in the esti-

mation of the Time of Emergence. Deser et al. (2012) use a

40-member global model ensemble to study the impact of

natural variability on the expected climate change in North

America over the next decades.

Studies tackling interannual variability in the context of

regional climate model simulations are few, most of them

making use of the PRUDENCE (Vidale et al. 2007) and

ENSEMBLES (Fischer and Schär 2009) projects which both

cover European climate. In general, focus has been on the

summer season, where a pronounced projected increase in
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interannual surface temperature variability needed attention

to improve understanding of the processes involved. Even

fewer studies have been performed for North America.

Duffy et al. (2006) looked into interannual variability from

four RCMs focusing on the Pacific North West. The recent

availability of the NARCCAP dataset will certainly facili-

tate further studies on aspects of interannual variability.

A fair question regarding advantages of using RCMs

over GCMs may be raised, especially for surface temper-

ature which evolves in general at scales well resolved by

global models. This discussion is part of a more general

debate about the value added by RCMs with respect to

GCMs (see for example Di Luca et al. 2012). Here, we will

circumvent this issue and justify our choice by saying that

many impact studies utilise NARCCAP data and that this

information will be relevant to those users.

In Sect. 2, the model data used and the methodology are

presented, with special emphasis on statistical tools

developed for this research. In Sect. 3, results are presented

for several studies: First, the local interannual variability

over North America at a seasonal scale is examined, and

the expected climate change signal is discussed; then, a

study of discrimination between the climate change signal

and interannual variability is carried out, and conclusions

are extended to different spatio-temporal scales. Results are

summarized and discussed in Sect. 4.

2 Data and methodology

2.1 Observations

Two terrestrial gridded data sets were used to validate the

climate models’ historical simulations and to evaluate

differences in their representation of past climate. Monthly

mean surface temperature data were obtained from the

University of East Anglia’s Climatic Research Unit

(hereafter CRU; Mitchell and Jones 2005) and from the

University of Delaware (hereafter UDEL; Matsuura and

Willmott 2009). Both data sets were provided on a global

latitude-longitude grid with a 0.5� 9 0.5� resolution. When

comparisons are performed between simulations and

observations, all data are linearly interpolated to the

CRCM’s 45-km polar stereographic grid.

2.2 NARCCAP simulations

Some of the Regional Climate Model (RCM) simulations

used in this study were provided by the North American

Regional Climate Change Assessment Program (NARC-

CAP) described in Mearns et al. (2009). The data is ref-

erenced in (Mearns et al. 2007). Table 1 presents a list of

the RCMs, along with a definition of each RCM’s acronym

and reference publication, as well as a summary view of

the combinations of each run. In NARCCAP, a total of six

RCMs were run with a horizontal grid spacing of about

50 km over similar North American domains with experi-

ments that include simulations of climate of the recent past

(driven by reanalysis) and climate change simulations

(driven by global climate models). The former were driven

by lateral boundary conditions derived from the National

Centers for Environmental Prediction’s (NCEP) Depart-

ment of Energy (DOE) global reanalysis (Kanamitsu et al.

2002) for the 25-year period between 1980 and 2004,

excluding one year of spin-up. The latter comprises RCM

simulations, driven at their lateral and lower boundaries by

outputs from AOGCM (Atmosphere–Ocean Global Cli-

mate Model) simulations, for present (1971–2000) and

future climate (2041–2070) using the Special Report on

Emissions Scenarios (SRES) A2 emissions scenario

(Nakicenovic and Swart 2000), excluding the first 3 years

of spin-up. Four AOGCMs are used to drive the RCMs: the

Canadian Coupled Global Climate Model version 3

(CGCM3, Scinocca et al. 2008; Flato and Boer 2001), the

NCAR (National Center for Atmospheric Research)

Community Climate Model version 3 (CCSM3, Collins

et al. 2006), the Geophysical Fluid Dynamics Laboratory

Climate Model version 2.1 (GFDL Gamdt (The GFDL

Global Atmospheric Model Development Team) 2004) and

the United Kingdom’s Hadley Centre Coupled Climate

Model version 3 (HadCM3, Gordon et al. 2000).

From Table 1, we can see that a total of nine RCM-

AOGCM pairs are used here to analyze interannual vari-

ability and the climate change signal with three RCMs

(CRCM, WRFG and RCM3) driven by two AOGCMs (the

former two by the CGCM3 and the CCSM, the latter by the

CGCM3 and the GFDL) and three RCMs driven by only

one AOGCM (ECP2 driven by GFDL, HRM3 driven by

HadCM3, and MM5I driven by CCSM).

Reanalysis-driven RCM simulations use AMIP II sea-

surface temperature (SST) and sea-ice (SI) concentration

observations as lower boundary conditions (Kanamitsu

et al. 2002). AOGCM-driven RCM simulations use SST

and SI from the AOCGM data. In both reanalysis- and

AOGCM-driven simulations, SST and SI surface boundary

conditions are updated every 6 h using a linear interpola-

tion between consecutive monthly-mean values. Similarly,

boundary conditions are interpolated from the low resolu-

tion to the 50-km grid meshes using a linear interpolation

in the horizontal.

2.3 Additional simulations

Additional analyses were performed using data from two

140-year RCM climate change simulations covering

the 1961–2100 period. These projections were performed

Regional climate change

123



in-house by the Climate Simulation Team at Ouranos, with

version 4.2 of the CRCM (Music and Caya 2007; de Elı́a

and Côté 2010). Both simulations were configured with a

regional domain similar but not identical to that of

NARCCAP, running with a horizontal grid-size mesh of

45 km (polar stereographic grid true at 60�N) and covering

most of North America (200 9 192 grid points). The two

simulations were driven by two members of the CGCM3

(members #4 and #5 at T47, differing only in their initial

conditions), allowing sampling of some of the natural cli-

mate variability. After 2000, both the driving GCM and the

RCM follow the SRES A2 future emissions scenario. A

spectral nudging technique was applied to large-scale

winds within the interior of the regional domain, to keep

the CRCM’s large-scale flow close to its driving data

(Riette and Caya 2002). The spectral nudging applied here

is considered to be relatively weak, with horizontal winds

of wavelengths greater than 1,400 km nudged with inten-

sity varying in the vertical (starting at around 500 hPa and

increasing toward the top, where only 5 % of the CRCM’s

large scale is replaced by that of its driving data, corre-

sponding to a characteristic relaxation time of 10 h).

2.4 Variables and time periods

In this study, we concentrate on seasonal means of 2-m

temperature. Seasons are defined as follows: Winter as

December, January and February (DJF); Spring as March,

April, May (MAM); Summer as June, July and August

(JJA); Fall as September, October, November (SON). All

seasons were analyzed, but for reasons of space, only

summer and winter will be shown.

2.5 Indexes and statistical tools

Interannual standard deviations (STD) are computed with

the biased estimator, which is defined as

STD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

ðxn � xÞ2
v

u

u

t ; ð1Þ

where

x ¼ 1

N

X

N

n¼1

xn ð2Þ

is the average of the detrended values, with xn being the

detrended value of a given season of a particular year, and

N being the total number of seasons. Time series were

linearly detrended before variance estimations, and this

trend estimated within the time window used.

Comparisons between standard deviations were per-

formed using a Variability Ratio Index VRIm for each

model, which is defined as

VRIm ¼
stdm

stdo
� 1

� �

� 100 if stdm� stdo

� stdo

stdm
� 1

� �

� 100 if stdo [ stdm

;

8

<

:

ð3Þ

where stdm is the STD value of model m, and stdo is the

STD from observations. The interest of this index lies in

the symmetry of its absolute value regarding excesses or

deficits of variance. This index was inspired from the work

of Gleckler et al. (2008) and Scherrer (2010).

Evaluation of the VRI’s statistical significance depends

on the properties of a 5 % right-sided F test (see von Storch

and Zwiers 1999). For GCMs or downscaled GCMs to be

compared against observations, VRI values below a

threshold of 36 % are masked; this permits the identifica-

tion of areas where the model’s STD cannot be said to be

statistically different from that of the observations.

In order to discriminate the influence of anthropogenic

climate change from that of interannual variability, we use

a measure related to signal-to-noise ratio. This last is

generally used to compare the strength of a given signal to

that of the background noise (in this case the signal is the

Table 1 Acronyms, full names and modelling group of RCMs involved in the NARCCAP project, as well as the data used to drive each RCM.

Of the several possible combinations of pairs of regional model-global model, those marked with an X were used in this research

RCM RCM’s full name and reference Center Driven

by:

CGCM3 HadCM3 GFDL CCSM

CRCM Canadian Regional Climate Model (version 4.2.0) (Music and

Caya 2007; Caya and Laprise 1999)

Ouranos/UQAM NCEP X X

ECP2 Experimental Climate Prediction Center Regional Spectral

Model (Juang et al. 1997)

UC San Diego/

Scripps

NCEP X

HRM3 Hadley Regional Model (version 3) (Jones et al. 2004) Hadley Centre NCEP X

MM5I MM5—PSU/NCAR mesoscale model (Grell et al. 1993) Iowa State

University

NCEP X

RCM3 Regional Climate Model (version 3) (Giorgi et al. 1993a, b) UC Santa Cruz NCEP X X

WRFG Weather Research and Forecasting model (Skamarock et al.

2005)

Pacific

Northwest Natl

Lab

NCEP X X
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multi-year trend induced by anthropogenic GHG forcing,

and the noise is interannual climate variability). This

comparison can be useful to either detect a climate change

signal, as is done for example with observations in Lieb-

mann et al. (2010) or with climate model projections, to try

to predict the time of emergence of the climate change

signal above the noise as in Giorgi and Bi (2009) discussed

in the introduction. Here, the signal-to-noise ratio will be

used in a way similar to that of the latter, but with several

differences that will be described in the following para-

graphs. In our case, instead of using the signal-to-noise

ratio directly, we will transform it into something hopefully

somewhat easier to visualize. The main idea is to write the

signal-to-noise ratio in the form of a statistical test and

rewrite this latter as a function of the number of years of

the sample (this is possible because the error associated to a

trend estimation depends on the number of data points, as

shown in Appendix Error in trend and variance). This

permits us, with a few reasonable approximations, to use

this number of years as a measure of discrimination

between climate change and interannual variability. That

is, given a linear trend we obtain the expected number of

years that will be necessary for this discrimination to take

place. The expression representing this measure will be

called Expected number of Years before Emergence (EYE)

and is written below. Its full mathematical development

and resemblance with Time of Emergence (ToE), as used

in other studies, is described in Appendix 1. We can write

the EYE or na as

na ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
tar

b̂

 !2
3

v

u

u

t ; ð4Þ

where b̂ represents the expected climate change trend, (in

our case, as estimated in Sect. 3.2, by using two temporal

30-year windows), r is the standard deviation of the

interannual variability of the detrended surface temperature

(in our case, unless otherwise noted, an average of two

interannual variances taken from two different time win-

dows, present and future), and ta is the percentile of a

Gaussian distribution at a level of confidence a (95 %

percentile in this study).

It is important to clarify what the index EYE is and is

not:

1. As can be seen from expression (4), it is another way

of expressing the signal-to-noise ratio, with no addi-

tional information. It can be expressed also as the

expected number of years that may have to elapse

before we can detect a climate change signal from the

interannual variability. This elapsed time provides a

given confidence level that the expected climate

change signal will emerge.

2. Since a linear approximation is used in the develop-

ment of EYE, results make sense only in those regions

for which projected average temperature growth with

time is mostly linear. This is the case over long periods

of time but obviously fails when the effect of

anthropogenic greenhouse gases is felt for the first

time (when the slope goes from zero to a roughly

constant value during a period). Results from CMIP3

GCMs (Coupled Model Intercomparison Project, Mee-

hl et al. 2007a; not shown) indicate that for North

America, this is a good approximation for the entire

XXI century with all SRES scenarios. For a given

region where linear growth has existed for several

years, we may consider any point within that period as

the starting point. Hence, the EYE should not be

considered as the number of years starting today that

we may have to wait until a climate change signal is

detected locally; it refers to any time window in a

region of linear growth. Conversely, the ‘‘time of

emergence’’ defined in the work of Giorgi and Bi

(2009), of Mahlstein et al. (2011) and of Hawkins and

Sutton (2012) specifies calendar dates.

3. It is not a prediction, but simply an expected value (as

indicated by the word ‘‘expected’’ in EYE). In practice,

even if no model error were present, actual detection

could take place with more or less years of data,

depending on the effect of the unexpected lows and

highs. This will be further elaborated in Sect. 3.3.

4. The intuitive interpretation of this index makes it a

good candidate for policy use. Still, we favor that the

EYE should be understood as a rule-of-thumb for

exploring geographic areas that may experience earlier

than others the effects of climate change, without a

precise association to the time of emergence of the

signal.

The EYE index, in addition to being affected by the

structural errors of models through their imperfect esti-

mation of trends and variability, is also affected by sam-

pling error. A theoretical estimation of this error is

presented in Appendix 2.

3 Results

3.1 RCM-downscaled interannual variability

In this section, we analyze the abilities of several GCM-

driven regional climate models to estimate the interannual

variability of the present climate. The variability of the

present climate was obtained from two sets of observations,

CRU and UDEL. Comparisons between these two obser-

vational gridded datasets yielded very small differences,
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although one region west of Ungava Bay in northern

Quebec—an area with very few observations—displayed

differences of more than 2 �C during winter and compa-

rable differences were found on the northwestern coast of

Hudson Bay during summer (not shown). Hereafter, we

will refer to the UDEL dataset as the observations.

Figure 1a (left panel) displays observations of winter sur-

face temperature interannual standard deviation for the

1971–1999 period, whose main feature is a northwest-

southeast axis of large variability (from Alaska to Mis-

souri) reaching values above 4 �C. Figure 2 shows the

winter VRI index presented in Sect. 2.5, computed against

observations, for NARCCAP’s regional climate models

described in Table 1. The top row shows all CCSM-driven

RCMs, the central row all CGCM3-driven runs, and the

two lower left panels are for the two GFDL-driven RCMs.

The lower-right panel shows the HadCM3-driven HRM3.

As discussed in Sect. 2.5, when the two standard deviations

are not statistically different, the area is masked with white.

It is important to keep in mind that the masked area

identifies regions of low statistical significance, however

the general lack of robustness of the displayed values

remains. For this reason, visual comparison between rep-

resented fields should be carried out cautiously. Large

areas of variability underestimation (blue) can be seen in

RCMs driven by the CGCM3 (second row) in the north-

west-southeast axis, although the level of underestimation

depends on the RCM. For example, in the state of Indiana,

variability is severely underestimated (more than 100 %,

indicating that the standard deviation of observations is

double that of simulated values) by the WRFG but not by

the CRCM. Remarkable overestimations (red) appear in

the southeastern US (United States) for both the WRFG-

CCSM and the ECP2-GFDL pairs. In these cases, red

values exceed 100 %, indicating that model-simulated

standard deviation doubles that of the observations. It is

worth mentioning that RCMs driven by the same GCM

may also show notable differences such as are seen for

RCM3 and ECP2, both driven by the GFDL. These results

suggest that RCMs add substantial variability information

to the driving data. A general view of results is given by

legends above each panel, providing the area-averaged

VRI (indicating the general tendency to over or underes-

timate the variability), and the area-averaged absolute

VRI (indicating overall departure from the observed

variability).

Inspection of the temperature interannual standard

deviation simulated by each RCM (not shown) indicates

that some models produce a north–south temperature var-

iability gradient (those driven by the CGCM3), while

others generate fields that resemble more the observations,

with an area of larger values crossing North America from

the northwest to the southeast (as in Fig. 1a). All models

seem to capture relatively well the location of the inter-

annual variability maximum in the proximity of Alaska.

Figure 1b (right panel) displays observations of summer

surface temperature interannual standard deviation for the

1971–1999 period. Variability is much lower in summer

than in winter and dominant patterns are less easy to

identify, although observations suggest higher values in

central and in extreme northern Canada. Figure 3 shows

the VRI presented in Sect. 2.5 computed against observa-

tions for the same models as described in Fig. 2, but for

summer. It can be seen that CCSM-driven RCMs (top row)

display variability overestimation in large parts of the

continent with a clear maximum in western Canada and

another one west of Illinois. Of the CGCM3-driven RCMs

(second row), two (RCM3 and CRCM) display very similar

patterns with underestimation in northern Canada and

strong overestimation on the coast of the southeastern US.

The CGCM3-driven WRFG differs considerably in the

centre of the US with a strong maximum over Iowa,

somehow coherent with that of the CCSM-driven WRFG.

A final remarkable feature is the overestimation of the

HadCM3-HRM3 in southern US that exceeds 200 % in

some areas. It is worth mentioning that, although overes-

timations and underestimations can be large in relative

terms, they are not necessarily so in absolute terms, given

the fact that the summer period displays low interannual

variability (see Fig. 1b).

Despite differences found among simulations from the

various RCMs, we find that models simulate well the

strong seasonality of the interannual variability. Winter is

characterized by large values, while summer variability is

much weaker (see Fig. 1 for observations). Fall and spring

display values that are midway between the extreme sea-

sons (not shown). Differences between the largest and the

smallest values are remarkable in both models and obser-

vations: local values of standard deviation as high as 5 �C

are found in the north during winter, while values smaller

than 1 �C appear during summer.

It is beyond the scope of this research to inquire whether

model variance biases can be quantitatively attributed

mostly to the driving GCMs or to the RCMs [see for

example Déqué et al. (2011), Vidale et al. (2007) and

Duffy et al. (2006)]. However, in order to at least partially

explore this issue, we present the temperature variability

index for the four driving GCMs over the 1971–1999

period. Figure 4 presents the winter season VRI and results

suggest that CGCM3 and HadCM3 display the largest

biases by underestimating variability in the former and

overestimating it in the latter (see legends above panels).

For the case of the CGCM3, results from Fig. 2 indicate

that CGCM3-driven RCMs have the tendency to accentu-

ate the lack of winter variability. This is especially the

case for the WRFG. Another feature that seems to be

R. de Elı́a et al.
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Fig. 1 Surface temperature interannual STD (in �C) over the 1971–1999 period from the UDEL observational dataset for winter (left panel) and

summer (right panel)

Fig. 2 Winter VRI values of surface temperature for the different

RCM simulations driven by GCMs against the UDEL observational

dataset over the 1971–1999 period. White masked areas with values

between ± 36 %, identify regions where we cannot say that the

RCM’s STD are statistically different from that of the observations.

Above each panel, the legend gives values of area-averaged VRI and

the area-averaged absolute VRI
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attributable to the driving GCM is the excess of variability

in the west coast of Canada and the US present in the

GFDL, and in the GFDL-downscaled data.

During summer departures from observations are pro-

portionally larger than they are in winter, as shown in

Fig. 5. The four GCMs overestimate variability in large

parts of the domain, this is particularly the case for the

GFDL in southern US—and underestimate it in the

northern areas. This behavior is similar to that of the driven

RCMs (see Fig. 3). Two remarkable facts are that: (1) the

most biased model (GFDL) becomes one of the least biased

after being downscaled by the ECP2; and (2) The CGCM3

displays overall excessive variance, while the three

downscaled simulations all agree in a general lack of it (see

legend on top of each panel for values).

The previous results suggest that interannual variability

is clearly dependent on the driving model, but that RCMs

introduce a large part of their own variability, particularly

in summer when absolute values are lower. It is important

to note that differences in variability between the driving

and the driven model may have several sources, among

which are modifications to the large scale by the RCM, the

effect of a high-resolution topography, or the role of land-

surface schemes.

Further information about attribution of an RCM’s

interannual variability can be gathered by studying the

surface temperature VRI of the RCMs driven by NCEP

reanalysis, against observations, over the 1980–2003 per-

iod (not shown). Unlike when driven by global models,

NCEP-driven RCMs show a weaker tendency to underes-

timate interannual variability during winter. The down-

scaled climate variability from reanalysis is closer to

observations even though important differences between

RCM results remain. During summer, all RCMs driven by

NCEP reanalysis show an inclination to overestimate the

observed variance almost everywhere. The MM5I is the

only one whose overestimation can be considered not too

far above the threshold of statistical significance. The other

models show at least one area of strong overestimation or

widespread overestimation.

Fig. 3 Same as Fig. 2 but for summer
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3.2 Expected climate change signal

Figures 6 and 7 present, for winter and summer respec-

tively, the projected increase in temperature due to

anthropogenic greenhouse gas emissions for the same

regional models as in previous figures. Estimations from

NARCCAP have been discussed before, for example in Di

Luca et al. (2012) and in Sobolowski and Pavelsky (2012),

who focus on the southeastern United States. In this work,

trends were computed by making a difference between the

averages of two time windows: future (2041–2070) minus

present (1971–2000), and dividing the result by the inter-

vening years (70). Afterwards, values are normalized to �C/

century. In order to simplify the interpretation, in what

follows we will consider these trends as good estimations

of the expected trends, in the sense that they are affected by

a small sampling error, originating from interannual and

interdecadal variability. This is equivalent to saying that

these estimations are not far from the ensemble mean

estimation of an RCM (using an ensemble of a given RCM

driven by many members generated by the same GCM).

This assumption is necessary, given that a single simulation

member is available for each model setup in NARCCAP.

As shown in Appendix 2—and in the discussion about

Fig. 10 in Sect. 3.3, a typical sampling error is of

approximately 1 �C/century, but it will be disregarded in

this study.

The winter temperature climate change signal (Fig. 6)

displays a clear north–south warming gradient in all

models, except in the RCM3-GFDL simulation (lower left

panel), where a maximum on a northwest-southeast axis is

the main feature (note: inspection of the GFDL driving

simulation suggests that this particular pattern is not

attributable to the driving data), and in the WRFG-

CGCM3, where, with the exception of Hudson Bay’s

temperature increase, is rather homogeneous. Local max-

ima of warming are located in Hudson Bay and the Lab-

rador Sea for all models (except for the RCM3–GFDL),

Fig. 4 Winter VRI values of surface temperature for the four driving GCMs against the UDEL observational dataset over the 1971–1999 period.

Above each panel, the legend gives values of area-averaged VRI and the area-averaged absolute VRI

Regional climate change

123



where a decrease in sea-ice cover, depth and fraction fur-

ther accentuates temperature increases.

It is interesting to note pattern similarities between

results from independent model combinations such as

WRFG–CCSM, HRM3–HadCM3 and CRCM–CGCM3, as

well as discrepancies between different RCMs driven by

the same global model (CGCM3). Even results in Hudson

Bay, which depend strongly on ocean data, seem to be

affected differently in the driven RCMs (see differences

between RCM3–CGCM3 and CRCM–CGCM3, as well as

RCM3–GFDL and ECP2–GFDL). In addition, it is worth

mentioning that RCMs that project mostly weak tempera-

ture trend fields for a driving GCM (WRFG–CGCM3 and

RCM3–GFDL) respond differently with different driving

models (WRFG–CCSM and RCM3–CGCM3).

The summer temperature climate change signal (Fig. 7)

differs considerably from that of winter. Most models

display maxima in central United States, except for WRFG,

independently of the driving model. These maxima are in

part related to positive feedback induced by a decrease of

latent-heat fluxes and an increase in sensible fluxes due to a

drop in surface soil moisture (Seneviratne et al. 2010).

Regional models show different intensity and locations

for these maxima, such as the extension through British

Columbia and Alaska in the case of HRM3–HadCM3. It is

worth noting the presence of slight cooling in the North-

west Territories in northern Canada in the GFDL-driven

ECP2 simulation, as well as only slight warming in western

Canada for both WRFG simulations.

3.3 Examples of realistic possible trends at different

horizons

In order to have a visual sense of what a possible trend—

rather than an expected trend, as discussed in the previous

section—may look like in the next few decades, Figs. 8 and

9 display trends for winter and summer computed over

periods of 30, 50, and 70 years starting in the year 2000.

The trends are presented for two simulations obtained from

continuous 140 year CRCM integrations driven by two

Fig. 5 Same as Fig. 4 but for summer
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different CGCM3 members as described in Sect. 2.3,

allowing sampling of the effect of natural climate vari-

ability. Note that trends are normalized in �C/century to

ease comparison among panels. Figure 8 shows that it may

take many years before positive trends in winter affect all

regions simultaneously. For example, 30-year trends (upper

panels) show a slight negative trend in the southeastern US

(left panel), and in northern Canada (right panel). The case

displayed also shows that two possible projected trends can

be quite different from each other during the first decades,

as well as being different from the expected trend (repre-

sented by the 70-year trend in the lower panels, where both

members start to converge towards similar local trends). For

example, the 30-year trend (upper panels) shows two quite

distinct values in British Columbia, one of the order of

?8 �C/century (left panel), while the other is around

?2 �C/century (right panel). Similar results are also

reported in Knight et al. (2009). The shaded area on the

figure identifies the regions where statistically significant

changes are detected with a two-sided Student test at 95 %

confidence [see Appendix 1 and Eq. (12)]. In the upper

panels of Fig. 8 (30-year trends), we can see that areas

where trends are detected depend strongly on the simula-

tion, as can be seen over the Rockies. It is noteworthy that

on the upper left panel—that in which the emergence of the

climate change signal is present in a large percentage of the

western part of the continent—the Pacific Ocean also has an

emerging signal over the coast. Also interesting is the dif-

ference in behavior between the two simulations regarding

Hudson Bay; one becomes ice-free earlier (on the left),

showing a strong positive trend, but still not strong enough

to emerge from the interannual noise, while the other (on

the right) displays a very weak, non-significant trend.

It is interesting to see that simulations on the south-

eastern US and in particular over Florida have yet to have a

detected trend after 50 and even 70 years (see lower right

panel). Note that 70 years is the distance between present

and future windows used in Sect. 3.2.

Figure 9 displays the summer trends under the same

conditions discussed for Fig. 8. Negative trends are in this

Fig. 6 Projected change in winter surface temperature between the 2041–2070 and 1971–2000 periods for each NARCCAP simulation,

normalized to �C/century
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case non-existent on the continent, except for a small

region on the boundary between northern British Columbia

and northern Alberta for one of the members (upper left

panel). Trend differences in the central US between both

members (upper left and right panels), as well as differ-

ences between trends obtained with different period lengths

(upper right panel 30-year trend, and lower right panel

70-year trend), are quite remarkable. This illustrates that

early detection of an almost violent warming trend does not

necessarily foretell worse news in the long term than would

a low pace increase (see for example the evolution of the

trend in South Dakota in both upper panels of Fig. 9).

It is worth noting that statistical significance arrives

sooner in summer than it does in winter (compare upper

panels of Figs. 9 and 8), although convergence into a

similar pattern by the two ensemble members is less ful-

filled in summer than in winter (compare lower panels of

Figs. 9, 8). The cases here highlight a lack of certainty

regarding trends in the next few decades, even when no

model error is taken into account, and when no climate

prediction—as in Keenlyside and Ba (2010)—is attempted.

This predominant role of natural variability as a source of

uncertainty at this timescale, was already discussed by

Hawkins and Sutton (2009).

A general feature of the other seasons is the presence of

large areas of warming as well as smaller but still consid-

erably large regions of cooling. The distribution of these

regions is of course dependent on the driving-GCM member

chosen, and as illustrated in the previous figures, the

chances of finding a negative trend diminishes by increasing

the length of the period used to estimate the trend.

An examination of the statistical significance of these

trends shows that a region with a given long-term trend

may have different realized trends over the shorter term (as

in the Rocky Mountain area in the upper panels of Fig. 8

for 30-year trends). This may lead to a detection of climate

change in one case (left panel) and not in the other (right

panel). The same can be said of two regions that have

similar long-term trends (as for example central Quebec

and the Northwest Territories, west of Hudson Bay) but

Fig. 7 Same as Fig. 6 but for summer
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that in the short term may present very different behavior

(see Fig. 8, upper right panel, where there is cooling for a

30-year period west of Hudson Bay). This clearly illus-

trates the fact that interannual variability contributes to the

existence of cooling trends embedded in expected long-

term warming trends, and to either early or late detection of

temperature warming trends.

Figure 10 illustrates how the root mean-squared differ-

ence (RMSD) over North America between trend patterns

of these two CRCM simulations decreases with period

length, and how values depend on the season. It is clear

from this image that for periods shorter than 30 years, the

variety of possible trends becomes considerably large. The

convergence with an average difference less than 1 �C/

century is equivalent to that theoretically estimated in

Appendix 2. We can see that the largest RMS differences

in the short term occur in winter, while the smallest are

found in summer, the transition seasons (fall and spring)

generally give intermediate values. Note that annual and

summer trends have very similar values.

3.4 Discriminating anthropogenic climate change

from interannual variability

In Sect. 3.2, we discussed the estimation of the expected

climate change trend from several projections, and in the

previous section we illustrated that the expected climate

change trend may differ substantially from the trend one

may in fact observe in the short term. Still, the concept of

expected climate change signal is very valuable. In order to

quantify our expectations about the potential for each

region of North America to be affected by climate change

in the shorter term, we will use here the statistical tool

presented in Sect. 2.5.

Figure 11 displays the Expected number of Years before

Emergence (EYE) for winter temperature for all

Fig. 8 Trends computed in �C/century for winter surface tempera-

ture, from two CRCM 140-year continuous simulations (driven by

two members of CGCM3, shown over each column), using periods of

30 (top), 50 (middle) and 70 years (bottom), starting from the year

2000. Statistical significance of the trends using a Student’s test (as

described in Appendix 1) is displayed by the grey shading
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NARCCAP simulations. Let us recall that an EYE value of

a large number of years implies a climate change signal

that is more difficult to disentangle from interannual vari-

ability. In general, models show different behavior,

although several common features can be found. A north-

west-southeast axis of relatively high values is a common

feature. We find that the EYE’s spatial pattern for winter is

predominantly influenced by that of the interannual stan-

dard deviation (see Fig. 1a for observations from the

present climate) and not much by the north–south warming

gradient of expected change (Fig. 6). Most models agree

that for Southern Alaska, British Columbia, central United

States, and Florida, many years may be required—in some

cases well over sixty—for distinguishing climate change

from interannual variability. There is also considerable

agreement that the province of Quebec and northwestern

Mexico could feel the reality of climate change earlier than

other places in North America—within less than 30 years

of data according to some models. It is important to recall

Fig. 9 Same as Fig. 8 but for summer

Fig. 10 RMSD over North America between trends (in �C/century)

of the two 140-year continuous CRCM simulations when using

different length periods (years), for each season (in color), and for

annual trends (in black)
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that the trend used in expression (4) is the expected one; so,

as discussed in Sect. 3.3, the actual trend may be dis-

criminated earlier or later.

The upper left panel of Fig. 13 shows the median winter

EYE value at each gridpoint from the nine simulations

depicted in Fig. 11 and confirms what has been discussed

above.

Summer temperature EYE presented in Fig. 12 tells a

more complicated story. Models disagree substantially over

northern areas, a disagreement that can be traced back to

climate change trend differences discussed in Sect. 3.2

where it was found that the WRFG (with both driving

models) and the ECP2 showed a particularly weak climate

change trend. The EYE index further exacerbates these

differences since it is a function of the inverse of the trend

(see Eq. 4). With a slight maximum of EYE in a north–

south axis in the center of North America, it would seem

that the interannual standard deviation’s pattern (see

Fig. 1b for observations from the present climate) has

generally a greater influence than the maxima of expected

warming in central US (Fig. 7), but this relation is not as

strong as was the case in winter. However, the regions of

EYE values exceeding 100 years are dominated by the

relatively low warming for the different combinations of

RCMs and GCMs. The median field of summer EYE is

presented in the upper right panel of Fig. 13 and gives an

overview of the main features discussed above.

The lower panels of Fig. 13 depict the EYE as in the

upper panels but consider the observed variability in the

present climate time window instead of the modeled one

(cf. Eq. 4). These results allow us to analyse the effect of

assuming observed variability as a better approximation

than modeled variability. It can be seen that EYE values

are sensitive to this assumption but that several features

remain unchanged. Notable modifications are the larger

values of EYE during winter in the northwest southeast

axis (later detection), and lower values for summer in

central US (earlier detection). Random error of the EYE

fields presented in Figs. 11 and 12 are discussed in

Appendix 2.

Fig. 11 Expected number of Years before Emergence (EYE) for winter surface temperature change for each NARCCAP simulation
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In several publications it has been mentioned that

despite the fact that winter temperature has a much stronger

climate change signal, summer temperature changes could

be detected or felt earlier, as a result of winter’s stronger

interannual variability (e.g. Hawkins and Sutton 2012).

This is partially true in our case too, especially for median

values, but as shown above, very large values of EYE are

present during summer in Canada in three of the

simulations.

3.5 Importance of spatio-temporal scale

Until now we have discussed interannual climate vari-

ability in the context of gridpoint seasonal values. How-

ever, many important applications are more concerned with

average values at larger scales (see for example the needs

of insurance industries in Mills 2005). In this section, we

will discuss separately the effect of time and space aver-

aging on reducing the interannual variability, and also its

impact on our ability to discriminate climate change.

3.5.1 Area averaging

Figure 14a displays the annual cycle of temperature inter-

annual variability from a CGCM3#4-driven CRCM 140-

year continuous simulation (for simulation details see Sect.

2.3). Here, the interannual variability is taken as the stan-

dard deviation of the monthly time series detrended with a

linear regression. Two different quantities are presented; a

black cross indicates the continental North American

average of interannual standard deviation at each grid point

(henceforth AG, for average gridpoint variability), for

monthly values. In mathematical terms, we can write this as

rAG ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

X

N

i¼1

r2
i

v

u

u

t ; ð5Þ

where r2
i represents the interannual variance of the detr-

ended monthly time series at each land grid point i, and

N is the total number of grid points in continental

North America. A black diamond denotes the interannual

Fig. 12 Same as Fig. 11 but for summer
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standard deviation based on a single monthly value repre-

senting all of continental North America. The detrended

North American time series is obtained by area averaging

monthly temperature values for all land gridpoints i within

the North American continent (henceforth referred as CN,

for continental variability).

Fig. 13 Median Expected number of Years before Emergence (EYE) for winter (left) and summer (right). The computation of EYE values use

the nine NARCCAP simulated (upper panels) and UDEL observed (lower panels) interannual variability for the present climate

Fig. 14 a Temperature

interannual variability (standard

deviation in �C) from

gridpoints in North America

(continental averages, crosses)

and for the entire North

American continent (diamonds).

The colors stand for: black for

monthly values, red for

seasonal, and blue for yearly,

b the same as Fig. 13a but for

Expected number of Years

before Emergence (EYE in

years). Values are computed

using the CGCM3#4-driven

CRCM 140-year simulation

described in Sect. 2.3
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We can see from the figure that continental averaging of

the time series reduces the standard deviation by a factor of

around three, when passing from individual gridpoints to

the entire continent (from black crosses to black dia-

monds). In terms of the Expected number of Years before

Emergence (EYE) we can see in Fig. 14b with the same

symbols, that area averaging corresponds to a reduction of

about a factor of two. Stott et al. (2011) illustrate a similar

situation with an example of the increase in the tempera-

ture’s signal-to-noise ratio as estimated over Europe and

over Paris.

It is interesting to estimate what the expected reduction

by averaging would have been, had the gridpoints been

spatially independent. Using the well-known formula for

the error associated to the sample mean (e.g., Wilks 2006)

rx ¼
rx
ffiffiffiffi

N
p ; ð6Þ

we obtain that reduction in interannual standard deviation

should have been of a factor of 100 (if the 12,500 grid points

in the entire land area of North America had been inde-

pendent). Hence, the factor three found with RCM data is

equivalent to having only about nine independent points (or

regions) for the entire North American continent. Identical

computations performed with the CRCM driven by the

other ensemble member of the CGCM3 yielded very similar

results (not shown). This simple estimation yields compa-

rable results to those of more sophisticated computations of

spatial dependence of observed surface temperature [see for

example Hansen and Lebedeff (1987) and Giorgi (2002)].

The high correlation between grid point values for

monthly surface temperature indicates that not much noise

reduction is gained by spatial averaging, if this is restricted

to small regions. At the same time, it also indicates that

point estimations, although suffering from higher noise

than regional estimations, are still highly informative.

Similar results in terms of histogram spread for future

temperatures at different spatial scales can also be found in

Hawkins (2011).

3.5.2 Time averaging

Figure 14a also illustrates the filtering effects of consid-

ering different season lengths on temperature interannual

variability, in particular for monthly, seasonal and yearly

periods. As in the previous subsection, values are also

estimated for AG variability, as given by Eq. 5, and are

represented by the same cross symbols, this time in red for

the four seasons and in blue for yearly values. The figure

also shows the continental (CN) interannual variability of

temperature with a diamond, in red for the four seasons and

in blue for yearly values. Since successive months and

seasons are weakly correlated in time at gridpoint scale,

time averaging is quite effective in reducing interannual

variability (compare black crosses with red and blue

crosses). A similar effect can be seen in the EYE illustrated

in Fig. 14b. Reduction of variability by averaging in time

seems less effective at the continental scale: notice for

example reductions of around 30 % for all seasons for AG

variability (compare black and red crosses in Fig. 14a), and

that of a much smaller factor for CN variability (compare

black and red diamonds in Fig. 14a). Strong seasonality in

interannual variability results, nevertheless, in yearly val-

ues being quite similar to those for summer.

In terms of both EYE and interannual variability, it can

be seen that averaging monthly temperature values on a

continental scale (black diamonds) is as effective in

reducing noise as averaging gridpoint monthly values into

yearly values (blue crosses).

4 Summary and discussion

The aim of this study was to analyse the role of interannual

variability in concealing the effect of temperature increases

due to GHGs on a local scale. As discussed in the intro-

duction, a number of studies published recently have ana-

lysed similar issues, however, very few of these studies

have been performed with RCMs, and even fewer over

North America. In order to accomplish this, we used an

ensemble of regional climate change projections over

North America, performed at a nominal resolution of

50 km, most of them belonging to the NARCCAP project.

We first analysed the ability of the different models (i.e.

RCMs and GCMs) to reproduce present interannual vari-

ability. We found that they simulate well the strong sea-

sonality of temperature interannual variability, but show

large departures from observed variability in some cases,

and also from that of the driving models.

The expected climate change signal for winter displays a

clear north–south warming gradient over North America in

the majority of simulations, while the summer warming

pattern is not as strong, and shows its maximum in central

United States. These general results coincide with those

presented in several previous publications, but some models

depart from this behaviour. An additional pair of 140-year

continuous runs from the Canadian RCM, driven by two

different members of the Canadian CGCM3, was used to

illustrate the effect of natural climate variability in decadal

and multi-decadal scales. The predominance of natural

variability at short time scales can hence contribute to either

earlier or later detection of temperature warming trends.

A new index EYE, related to signal-to-noise ratio, was

developed to evaluate the expected number of years before

the warming trend emerges from interannual variability.

One of the advantages of this index is the clarity of its
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meaning, which may appeal to policy makers. Still, due to

the number of approximations and assumptions, we prefer

to interpret these results in a qualitative way. Our results

suggest that detection of the climate change signal is

expected to occur earlier in summer than in winter almost

everywhere. Hence, despite the fact that winter temperature

has a much stronger climate change signal, summer tem-

perature changes could be detected or felt earlier. This

shows, as previous research has also shown, the importance

of considering interannual variability, since early detection

of climate change can happen in regions different from

those for which a stronger climate change signal is

expected. In particular, we find that the province of Quebec

and northwestern Mexico may possibly feel climate change

earlier than elsewhere in North America during winter,

with less than 30 years of data according to some models.

Santer et al. (2011) show that temperature records of at

least 17 years may be required for identifying human

effects on global-mean tropospheric temperature, which is

surprisingly close to our local results.

Considering the differences found among RCM simu-

lations, these results should inspire caution with respect to

any practical application. In addition, we may also wonder

whether the benefits of using high-resolution RCM instead

of GCM data—privileged by most studies described in the

introduction—are not counterbalanced by the necessarily

smaller size of the ensemble available. This is a question

that deserves further attention especially given the results

of Bukovsky (2012) that illustrate that at least short-term

temperature trends in RCMs may be quite different from

those in the driving data.

Since both time and spatial averaging can be used for

noise reduction, the length of the time period as well as the

size of the region of interest become fundamental for our

capacity to discriminate climate change from natural

variability.

It is worth mentioning that in many instances, users do

not have the freedom of choosing a preferred spatial or

time scale to study climate change. In general, they are

confronted with a specific problem with well-defined

temporal and spatial scales.

From our results we can see that industries sensitive to

weather phenomena that extend over a large part of the

year are generally less subject to interannual variability

than other industries whose interests are concentrated in a

short period. An example of the former is hydroelectric

power generation that accumulates water during the entire

year, while an example of the latter is tourism for a par-

ticular event—like a city summer festival—that may last

for less than a week.

Similarly, in the spatial scale, small farm producers are

affected by occurrences in their local area, while large

agro-industrial corporations or insurance companies

distribute weather-related risk over vast regions, sometimes

located on different continents. Therefore, a business

affected by a given climate vulnerability operating over

large geographical regions undoubtedly dampens the

effects of climate-related interannual variability, but

simultaneously increases the chances of being affected by

climate change earlier. In a strategic business report for the

insurance industries, Ernst and Young (2008) rank climate

change as the top risk factor for the insurance industry.

Acknowledgments The authors wish to thank the North American

Regional Climate Change Assessment Program (NARCCAP) for

providing the data used in this paper. NARCCAP is funded by the

National Science Foundation (NSF), the US Department of Energy

(DoE), the National Oceanic and Atmospheric Administration

(NOAA), and the US Environmental Protection Agency Office of

research and development (EPA). We would also like to acknowledge

the Ouranos climate simulation and analysis team for generating and

supplying output from the continuous 140-year runs from the Canadian

RCM, and the Canadian Center for climate modelling and analysis

(CCCma) for kindly providing the CGCM3 driving data. The authors

also want to thank the editor and the reviewers, especially one of them

who contributed considerably to the improvement of the manuscript.

Appendix 1: Expected number of years for statistically

significant climate change

There are several hypotheses that are considered in the

definition of the EYE. First of all that the trend is linear; this

seems a reasonable approximation as discussed in Sect. 2.5

and as shown for example by Santer et al. (2011) (who

considered that ‘‘to first order, the signal is timescale

invariant’’) and Mahlstein et al. (2011). This is also

implicitly assumed when a trend is obtained from the

averages of two time windows. However, although linearity

is a reasonable approximation for the present century, the

choice of the beginning of this trend causes some difficul-

ties. In this work, we do not concern ourselves with this

issue, since we are only interested in this measure as a

qualitative indicator. Hence, the view taken here is that

climate has been stationary until a given time, after which

temperature grows linearly (see for example Figs. 10.4 and

10.5 in Meehl et al. 2007b, where results suggest that linear

growth is a good approximation after the 1970s and during

several decades). In addition, inferences regarding the dis-

crimination of climate change from natural variability will

be taken only considering model data and from an arbitrarily

determined starting point. This will provide information

regarding the expected length of the time series needed to

discriminate climate change, but not its actual place in time.

Two possible misunderstandings should be avoided.

First, if the chosen starting point for the analysis of the

slope were 1990, the number of years N obtained by this

method should not be interpreted as meaning that climate

change will only be detected in the year 1990 ? N. One

Regional climate change
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can choose any starting point as long as the linearity

approximation stands. Second, the EYE is by definition an

expected value; hence, it is not a prediction and cannot be

applied to a single realization. It does not indicate the time

that emergence from natural variability will happen, but

when it is expected to occur.

Another hypothesis is that seasonal values are interan-

nually decorrelated. Our studies suggest (not shown) that

the hypothesis of total decorrelation cannot be rejected

with local (grid point) time series of a 100 years.

It is important to keep in mind that the data analyzed

from the simulated 140-year time series in Sect. 3.3 may

lack a realistic decadal variability as is the case of many

climate simulations [see validation analyses of multideca-

dal variability among CMIP3 models discussed by Kravt-

sov and Spannagle (2008) and in Santer et al. (2011)]. This

is one further reason why these estimations should be

considered carefully if applied for policy use.

The test for the slope of a cloud of points based on the

Student distribution will be developed. For its comparable

performance with respect to other tests in temperature trends

see Liebmann et al. (2010) and Mahlstein et al. (2011).

The standard definition of a Student test can be written

as

t ¼ b̂
sb
; ð7Þ

where the numerator is the estimated statistic and the

denominator is the estimated standard deviation of the

statistic. In the case of the trend of a time series, this

expression can be rewritten as

t ¼ b̂

s=
ffiffiffiffiffi

SS
p ; ð8Þ

where

s2 ¼ 1

n� 2

X

n

i¼1

yi � ŷð Þ2; ð9Þ

with i being the year of each value yi, with a total of n

years, and ŷ is the ordinate value obtained by linear

regression. This last expression is the detrended variance.

The term SS can be expressed as

SS ¼
X

n

i¼1

i2 � 1

n

X

n

i¼1

i

 !2

: ð10Þ

For a thorough derivation of these expressions see

Scheaffer and McClave (1990). The term SS can be

expressed in a simpler way by rewriting the summations

using the properties of finite series of integers as

SS ¼ n

12
n2 � 1
� �

: ð11Þ

Using (11), we can now rewrite expression (8) as

t ¼ b̂
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

12
n2 � 1ð Þ

r

: ð12Þ

This expression of the statistic t is now function of the

estimated slope, the estimated detrended variance of the

time series, and the number of years in the sample.

For n reasonably large, t can be described by a Gaussian

distribution. By assuming n2 � 1 � n2, we can isolate n for

a given level of significance a, yielding

na ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
tar

b̂

 !2
3

v

u

u

t ; ð13Þ

where r now represents the detrended variance and the

trend b̂ is in degrees per year.

This expression can be interpreted in several ways. In the

present work, b̂ is going to be the expected trend (obtained

from a long term climate projection of a single simulation or

an ensemble as in Sect. 3.2). At the same time r, the esti-

mated interannual variability, will be the average detrended

standard deviation (average between past and future) when

the climate change trend is estimated by a simple difference

between future minus present temperature.

An alternative formulation using two time windows

instead of a linear regression was also developed (not

shown). It produced a similar functional form.

Appendix 2: Error estimations

Error in trend and variance

The error in the estimation of the detrended variance can be

obtained using the expression from von Storch and Zwiers

(1999), but taking into consideration that there are n-2

degrees of freedom,

r2
S2

T
¼ 2

r4
T

n� 2ð Þ ; ð14Þ

where the distribution is assumed to be symmetrical (zero

kurtosis), S2
T is the estimator of the temperature variance

and r2
T the population temperature variance. In our case

with two time windows of n = 30, the variance considered

in Sect. 3.3 is

r2
T ¼

1

2
r2

Tp
þ r2

Tf

� �

; ð15Þ

where Tp and Tf refer to present and future temperature

respectively.

Using properties of the Chi square distribution, and

assuming similar variances in both periods, the error of S2
T

may be written as
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r2
S2

T
¼ r4

T

n� 2ð Þ ; ð16Þ

where the variance over T now considers both present and

future temporal windows (the use of a double window

explains the decrease in variance estimation error from 14

to 16).

The slope of temperature trends are estimated by using

b ¼ 1

Ny
Tf � Tp

� �

; ð17Þ

where Ny is the distance in number of years between the

centers of the time windows.

The error on beta can be estimated using the standard

formula for error in the mean, as well as properties of the

variance operator (see von Storch and Zwiers 1999) as

r2
b ¼

1

N2
y

r2
Tp

n
þ

r2
Tf

n

 !

: ð18Þ

For most gridpoints and NARCCAP models, temperature

interannual variances in future and present cannot be said to

statistically differ. The exception is the HRM3-HadCM3,

which shows a loss of variance in the future during winter

over most of Canada, and the CCSM-driven models in the

northern tip of Canada during summer, which show an

increase of variance (not shown). With this information, the

previous expression can confidently be approximated by

r2
b �

2

N2
y

r2
T

n
; ð19Þ

where r2
T represents the mean variance between the present

and future climate. This assumption is taken only for the

sake of obtaining an estimate of the error bar, and is con-

sistent with results and assumptions used elsewhere (e.g.,

Hawkins and Sutton 2009).

Under the conditions of the experiment discussed in this

paper (n = 30, Ny = 70, and S of around 3 �C; see Fig. 1),

it can be seen that the sampling error in the estimation of

the trend in climate change is of around 1 �C/century.

Error in expected number of years before emergence

(EYE)

The other quantity whose error needs to be estimated is the

EYE, presented in Sect. 2.5 and derived in Appendix 1. For

the sake of completeness, we rewrite below the final

expression (13).

na ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12
tar
b

� �

3

s 2

: ð20Þ

It can be shown that for a function f of two independent

variables x and y of the form

f ¼ a
x

y2

� �1=3

; ð21Þ

its error can be written as a function of those of the

independent variables by error propagation as

r2
f � a2 1

32

x

y2

� �2=3 r2
x

x2
þ 4

r2
y

y2

 !

; ð22Þ

where r2
f is the error in function f, and r2

x and r2
y the error

associated to variables x and y. The normalized error can be

expressed as

rf

f

� �2

� 1

9

r2
x

x2
þ 4

r2
y

y2

 !

: ð23Þ

Using the definition of the EYE from (20) and taking

r2as x (notice that r2 will be estimated by S2
T ), b̂ as y,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 tað Þ23

q

as a, and na as f, it is easy to see that (23)

becomes

rna

na

� �2

� 1

9

r2
s2

T

S4
T

þ 4
r2

b

b2

 !

; ð24Þ

Taking advantage of the estimation of errors for each of

these variables discussed in (16) and (19), we get

rna

na

� �2

� 1

9n
1þ 8

S2
T

N2
y b2

 !

: ð25Þ

In most cases this expression can be approximated by

neglecting the left hand side of the addition. In per cent

units, we obtain

rna

na
� 90%

1
ffiffiffi

n
p 1

Ny

ST

b
: ð26Þ

For example, for the typical conditions proposed in this

research, with n = 30 and Ny = 70, a trend of 4 �C/century

and an interannual standard deviation of 3 �C gives a

relative error of around 20 %. This error increases with

larger variability and smaller trend.
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