Welcome!

Linda O. Mearns
National Center for Atmospheric Research

Boulder, CO
April 7-8, 2010
Meeting Goals

• Learn about NARCCAP – conceptually and nuts and bolts

• Interact with modelers and other scientists on NARCCAP Team– get questions answered – give users’ perspectives

• See what other users have been working on -- network with other users with similar research interests - develop projects

• Discuss with NARCCAP Team further development ideas for data provision and information on web site for users

• Have fun!
Uncertainties about future climate

- The future trajectory of emissions of greenhouse gases (based on uncertainties about how the world will develop economically, socially, politically, technologically)
 - Explored through the development of scenarios of future world development

- How the climate system responds to increasing greenhouse gases.
 - Explored through use of climate models
 - Spatial scale at which climate models are run is an additional source of uncertainty

- Internal natural variability of the climate system
Concentrations of greenhouse gases in the atmosphere

CO₂ concentration (ppm)
- Scenarios: A1B, A1T, A1FI, A2, B1, B2, IS92a
- X-axis: 1980 to 2100
- Y-axis: 1500 to 1300

CH₄ concentration (ppb)
- Scenarios: A1B, A1T, A1FI, A2, B1, B2, IS92a
- X-axis: 1980 to 2100
- Y-axis: 1500 to 4000

N₂O concentration (ppb)
- Scenarios: A1B, A1T, A1FI, A2, B1, B2, IS92a
- X-axis: 1980 to 2100
- Y-axis: 300 to 500
The Future

Warming will increase if GHG increase. If GHG were kept fixed at current levels, a committed 0.6°C of further warming would be expected by 2100. More warming would accompany more emission.

\[
\begin{align*}
1.8\,^\circ C &= 3.2\,^\circ F \\
2.8\,^\circ C &= 5.0\,^\circ F \\
3.4\,^\circ C &= 6.1\,^\circ F
\end{align*}
\]
Uncertainty on Regional Scales

Fraction of total variance in decadal mean air temperature predictions explained by the three components of uncertainty

Orange = internal variability
Green = emissions scenario uncertainty
Blue = model uncertainty

Hawkins and Sutton, 2009
• What about higher resolution information about climate change?
• Global models run at about 200 km spatial resolution - what resolution do we need for adaptation planning in various sectors (water resources, agriculture etc.)
• How to balance the desire for higher resolution with the other major uncertainties (future emissions, general response of climate system).
Global Climate Models

Regional Climate Models
Advantages of higher resolution

North America at typical global climate model resolution

Hadley Centre AOGCM (HadCM3), 2.5° (lat) x 3.75° (lon), ~ 280 km

North America at 50 km grid spacing
Regional climate models allow use of finer resolution

- HadCM3 grid spacing is about 280 km.
- To reduce the spacing to 50 km, we would need $(280/50)^3 = 175$ times the computing power.
- Proposal: Use a finer-scale model over only a limited region of interest.
Nested regional modeling technique

- Global model provides:
 - initial conditions – soil moisture, sea surface temperatures, sea ice
 - lateral meteorological conditions (temperature, pressure, humidity) every 6-8 hours.
 - Large scale response to forcing (100s kms)

- Regional model provides finer scale (10s km) response
Examples Where Regional Modeling Is Useful

• Regions with small irregular land masses (e.g., the Caribbean)
• Complex topography (mountains)
• Complex coastlines (e.g., Italy)
• Heterogeneous landscapes
The North American Regional Climate Change Assessment Program (NARCCAP)

Providing climate scenarios for the United States, Canada, and northern Mexico

- Explores multiple uncertainties in regional and global climate model projections.
 4 global climate models x 6 regional climate models

- Develops multiple high resolution regional climate scenarios for use in impacts assessments.

- Evaluates regional model performance to establish credibility of individual simulations for the future

- Participants: Iowa State, PNNL, LLNL, UC Santa Cruz, Ouranos (Canada), UK Hadley Centre, NCAR

- Initiated in 2006, funded by NOAA-OGP, NSF, DOE, USEPA-ORD – 4-year program
NARCCAP - Team

Linda O. Mearns, NCAR
Ray Arritt, Iowa State, Dave Bader, ORNL, Wilfran Moufouma-Okia, Hadley Centre, Sébastien Biner, Daniel Caya, OURANOS, Phil Duffy, Climate Central, Dave Flory, Iowa State, William Gutowski, Iowa State, Isaac Held, GFDL, Richard Jones, Hadley Centre, Bill Kuo, NCAR; René Laprise, UQAM, Ruby Leung, PNNL, Larry McDaniel, Seth McGinnis, Don Middleton, NCAR, Ana Nunes, Scripps, Doug Nychka, NCAR, John Roads*, Scripps, Steve Sain, NCAR, Lisa Sloan, Mark Snyder, UC Santa Cruz, Ron Stouffer, GFDL, Gene Takle, Iowa State

* Deceased June 2008
Organization of Program

• Phase I: 25-year simulations using NCEP-Reanalysis boundary conditions (1980—2004)

• Phase II: Climate Change Simulations
 – Phase IIa: RCM runs (50 km res.) nested in AOGCMs current and future
 – Phase IIb: Time-slice experiments at 50 km res. (GFDL and NCAR CAM3). For comparison with RCM runs.

• Quantification of uncertainty at regional scales – probabilistic approaches

• Scenario formation and provision to impacts community led by NCAR.

• Opportunity for double nesting (over specific regions) to include participation of other RCM groups (e.g., for NOAA OGP RISAs, CEC, New York Climate and Health Project, U. Nebraska).
Phase I

- 6 RCMs (RegCM3, WRF, CRCM*, ECPC RSM*, MM5, HadRM3): Reanalysis (NCEP)-driven runs
- Results are shown here for 1980-2004 from selected RCMs
- Configuration:
 - common North America domain (some differences due to horizontal coordinates)
 - horizontal grid spacing 50 km
 - boundary data from NCEP/DOE Reanalysis 2
 - boundaries, SST and sea ice updated every 6 hours

* Spectral nudging applied

Mearns et al. BAMS (submitted)
NARCCAP PLAN – Phase II

A2 Emissions Scenario

GFDL
Time slice 50 km

CGCM3

HADCM3

CCSM3

Provide boundary conditions

1971-2000 current

2041-2070 future

CAM3
Time slice 50 km

GFDL

MM5
Iowa State

RegCM3
UC Santa Cruz

CRCM
Quebec, Ouranos

HADRM3
Hadley Centre

RSM
Scripps

WRF
PNNL
Quantification of Uncertainty

- The four GCM simulations already ‘situated’ probabilistically based on earlier work (Tebaldi et al., 2004)
- RCM results nested in particular GCM would be represented by a probabilistic model (derived assuming probabilistic context of GCM simulation)
- Use of performance metrics to differentially weight the various model results
The NARCCAP User Community

Three user groups:

• Further dynamical or statistical downscaling
• Regional analysis of NARCCAP results
• Use results as scenarios for impacts studies

www.narccap.ucar.edu

Over 400 users so far

To sign up as user, go to web site – contact Seth McGinnis,

mcginnis@ucar.edu