

NARCCAP

NARCCAP Third Users' Meeting

Welcome!

Linda O. Mearns
National Center for Atmospheric Research

Boulder, CO April 7-8, 2010

National Center for Atmospheric Research

Meeting Goals

- Learn about NARCCAP conceptually and nuts and bolts
- Interact with modelers and other scientists on NARCCAP Team— get questions answered give users' perspectives
- See what other users have been working on -network with other users with similar research
 interests develop projects
- Discuss with NARCCAP Team further development ideas for data provision and information on web site for users
- Have fun!

Uncertainties about future climate

- The future trajectory of emissions of greenhouse gases (based on uncertainties about how the world will develop economically, socially, politically, technologically)
 - Explored through the development of scenarios of future world development
- How the climate system responds to increasing greenhouse gases.
 - Explored through use of climate models
 - Spatial scale at which climate models are run is an additional source of uncertainty
- Internal natural variability of the climate system

Concentrations of greenhouse gases in the atmosphere

The Future

Warming will increase if GHG increase. If GHG were kept fixed at current levels, a committed 0.6°C of further warming would be expected by 2100. More warming would accompany more emission.

Uncertainty on Regional Scales

Fraction of total variance in decadal mean air temperature predictions explained by the three components of uncertainty

Orange = internal variability
Green = emissions scenario
uncertainty
Blue = model uncertainty

Internal variability

Hawkins and Sutton, 2009

- What about higher resolution information NCAR about climate change?
- Global models run at about 200 km spatial resolution - what resolution do we need for adaptation planning in various sectors (water resources, agriculture etc.)
- How to balance the desire for higher resolution with the other major uncertainties (future emissions, general response of climate system).

Advantages of higher resolution

North America at typical global climate model resolution

Hadley Centre AOGCM (HadCM3), 2.5° (lat) x 3.75° (lon), ~ 280 km

North America at 50 km grid spacing

Regional climate models allow use of finer resolution

- HadCM3 grid spacing is about 280 km.
- To reduce the spacing to 50 km, we would need $(280/50)^3 = 175$ times the computing power.
- Proposal: Use a finer-scale model over only a limited region of interest.

Regional Modeling Strategy

Nested regional modeling technique

- Global model provides:
 - initial conditions soil moisture, sea surface temperatures, sea ice
 - lateral meteorological conditions (temperature, pressure, humidity) every 6-8 hours.
 - Large scale response to forcing (100s kms)
- Regional model provides finer scale (10s km) response

Examples Where Regional Modeling Is Useful

- Regions with small irregular land masses (e.g., the Caribbean)
- Complex topography (mountains)
- Complex coastlines (e.g., Italy)
- Heterogeneous landscapes

The North American Regional Climate Change Assessment Program (NARCCAP)

Providing climate scenarios for the United States, Canada, and northern Mexico

- •Explores multiple uncertainties in regional and global climate model projections.
 - 4 global climate models x 6 regional climate models
- Develops multiple high resolution regional climate scenarios for use in impacts assessments.

- Evaluates regional model performance to establish credibility of individual simulations for the future
- •Participants: Iowa State, PNNL, LLNL, UC Santa Cruz, Ouranos (Canada), UK Hadley Centre, NCAR
- Initiated in 2006, funded by NOAA-OGP, NSF, DOE, USEPA-ORD –
 4-year program

NCAR

NARCCAP Domain

NCAR

Linda O. Mearns, NCAR

Ray Arritt, Iowa State, Dave Bader, ORNL, Wilfran Moufouma-Okia, Hadley Centre, Sébastien Biner, Daniel Caya, OURANOS, Phil Duffy, Climate Central, Dave Flory, Iowa State, William Gutowski, Iowa State, Isaac Held, GFDL, Richard Jones, Hadley Centre, Bill Kuo, NCAR; René Laprise, UQAM, Ruby Leung, PNNL, Larry McDaniel, Seth McGinnis, Don Middleton, NCAR, Ana Nunes, Scripps, Doug Nychka, NCAR, John Roads*, Scripps, Steve Sain, NCAR, Lisa Sloan, Mark Snyder, UC Santa Cruz, Ron Stouffer, GFDL, Gene Takle, Iowa State

^{*} Deceased June 2008

Organization of Program

- Phase I: 25-year simulations using NCEP-Reanalysis boundary conditions (1980—2004)
- Phase II: Climate Change Simulations
 - Phase IIa: RCM runs (50 km res.) nested in AOGCMs current and future
 - Phase IIb: Time-slice experiments at 50 km res. (GFDL and NCAR CAM3). For comparison with RCM runs.
- Quantification of uncertainty at regional scales probabilistic approaches
- Scenario formation and provision to impacts community led by NCAR.
- Opportunity for double nesting (over specific regions) to include participation of other RCM groups (e.g., for NOAA OGP RISAs, CEC, New York Climate and Health Project, U. Nebraska).

Phase I

- 6 RCMs (RegCM3, WRF, CRCM*, ECPC RSM*, MM5, HadRM3): Reanalysis (NCEP)-driven runs
- Results are shown here for 1980-2004 from selected RCMs
- Configuration:
 - common North America domain (some differences due to horizontal coordinates)
 - horizontal grid spacing 50 km
 - boundary data from NCEP/DOE Reanalysis 2
 - boundaries, SST and sea ice updated every 6 hours

* Spectral nudging applied

Mearns et al. BAMS (submitted)

Quantification of Uncertainty NCAR

- The four GCM simulations already 'situated' probabilistically based on earlier work (Tebaldi et al., 2004)
- RCM results nested in particular GCM would be represented by a probabilisite model (derived assuming probabilistic context of GCM simulation)
- Use of performance metrics to differentially weight the various model results

The NARCCAP User Community

Three user groups:

- Further dynamical or statistical downscaling
- Regional analysis of NARCCAP results
- Use results as scenarios for impacts studies www.narccap.ucar.edu

Over 400 users so far

To sign up as user, go to web site – contact Seth McGinnis, <u>mcginnis@ucar.edu</u>

THE END

NEW YORKER

BIG BOOK OF GLOBAL WARMING CARTOONS-2007-2107

