Quantification of uncertainty in high resolution temperature scenarios for North America

Guilong Li
Atmospheric Science and Application Unit

Xuebin Zhang
Climate Research Division

Environment Canada

Francis Zwiers
Pacific Climate Impacts Consortium

NARCCAP 3rd users’ workshop
Apr. 7-8, 2011
Outline

• Introduction
• Methodology
• Results
• Conclusions
Introduction – Objective

• Construct high resolution monthly temperature over North America

• Estimate high resolution scenario uncertainty in the projected temperature

• Partition uncertainty into different sources
Introduction – Data

• GCM data – PCMDI
 – 23 GCMs, resolution 100 – 400km, 1961-2099
 – 2 emission scenarios – A2 and B1
 – 38 runs from SRES-A2 and 44 runs from SRES-B1

• RCM data – NARCCAP

<table>
<thead>
<tr>
<th>GCM/RCM</th>
<th>GFDL</th>
<th>CGCM3</th>
<th>HADCM3</th>
<th>CCSM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRCM</td>
<td>--</td>
<td>finished</td>
<td>--</td>
<td>finished</td>
</tr>
<tr>
<td>ECPC</td>
<td>running</td>
<td>--</td>
<td>planned</td>
<td>--</td>
</tr>
<tr>
<td>HRM3</td>
<td>planned</td>
<td>--</td>
<td>finished</td>
<td>--</td>
</tr>
<tr>
<td>MM5I</td>
<td>--</td>
<td>--</td>
<td>planned</td>
<td>finished</td>
</tr>
<tr>
<td>RCM3</td>
<td>finished</td>
<td>finished</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>WRFP</td>
<td>--</td>
<td>planned</td>
<td>--</td>
<td>finished</td>
</tr>
</tbody>
</table>
Introduction – Data treatment

- All GCMs and RCMs are interpolated to CRCM grid points
- Inverse distance for GCMs
 - Four surrounding points
- Nearest assignment for RCMs
 - RCM3 and WRFP to CRCM
 - Over 90% of the grid points are within 45km
- Remove 1971-2000 climatology
 - CRCM, RCM3, WRFP and corresponding driven GCM
 - All GCMs from PCMDI
Methodology

Five RCM Outputs
Anomaly Temperature

Linear regression

Three driven GCMs
Anomaly Temperature

\[y_t = \beta_0 + \beta_1 t + \beta_2 x_t + \varepsilon_t \]

23 GCM Models
(38 runs from SRES-A2 and 44 runs from SRES-B1)
Monthly or seasonal temperature change in CMIP3
Randomly sample 100 values from each run

\[\hat{\beta}_0 + \hat{\beta}_1 t' + \hat{\beta}_2 x_{t,j} \]

Probabilistic Prediction on High Resolution
Temperature Changes and Uncertainties

Source of Uncertainties
Analysis of Variance

\[Y_{ijklm} = \mu + \alpha_i + \beta_j + \gamma_l + \rho_{m(j)} + (\alpha\beta)_{ij} + (\alpha\gamma)_{il} + (\beta\gamma)_{jl} \]
\[+ (\alpha\beta\gamma)_{ijl} + (\alpha\rho)_{im(j)} + (\gamma\rho)_{lm(j)} + (\alpha\gamma\rho)_{ilm(j)} + \varepsilon_{ijklm} \]
Result – Model Validation
Statistically and dynamically downscaled temperatures

RMSE:

Regression residual

CRCM/CGCM3

Statistical downscaling
CRCM/CGCM3 to GFDL

Dynamical downscaling
RCM3/GFDL
Results – Winter temperature change

<table>
<thead>
<tr>
<th>Year Range</th>
<th>10th percentile</th>
<th>Median</th>
<th>90th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-2040</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2041-2070</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2071-2099</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **10th percentile**
- **Median**
- **90th percentile**
Results – Summer temperature change

10th percentile | Median | 90th percentile

2011-2040

2041-2070

2071-2099
Results – Source of Uncertainty

\[Y_{ijlmk} = \mu + \alpha_i + \beta_j + \gamma_l + \rho_{m(j)} + (\alpha\beta)_{ij} + (\alpha\gamma)_{il} + (\beta\gamma)_{jl} + (\alpha\beta\gamma)_{ijkl} + (\alpha\rho)_{im(j)} + (\gamma\rho)_{ilm(j)} + (\alpha\gamma\rho)_{ilm(j)} + \varepsilon_{ijlmk} \]
Conclusions

• A framework was constructed by using combined dynamical and statistical downscaling methods to produce high resolution temperature scenarios over North America

• Multiple GCMs and RCMs relationships were applied to CMIP3 GCM simulations for emulating RCM simulations

• Uncertainty from GCM, regression model, internal variability, and downscaling from low resolution to high resolution were estimated

• Provide a product with high resolution monthly and seasonal temperature change and uncertainty
Thank you!